financial-dataset-preprocessor


Namefinancial-dataset-preprocessor JSON
Version 0.1.6 PyPI version JSON
download
home_pagehttps://github.com/nailen1/financial_dataset_preprocessor
SummaryA package for preprocessing financial datasets, powering the Life Asset Management development team.
upload_time2025-02-25 01:54:05
maintainerNone
docs_urlNone
authorJune Young Park
requires_python>=3.11
licenseNone
keywords
VCS
bugtrack_url
requirements pandas string_date_controller financial_dataset_loader
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Financial Dataset Preprocessor

A Python package for preprocessing financial datasets from various sources. This package provides tools and utilities for cleaning, transforming, and preparing financial data for analysis.

## Features

- Menu 2205 Preprocessor
  - Corporation Name Finder
  - Domestic Beneficiary Certificates Processing
  - Domestic Bonds Analysis
  - Repo Agreement Processing
  - Borrowings Management
- Additional preprocessors for other financial datasets (coming soon)

## Installation

You can install the package using pip:

```bash
pip install financial_dataset_preprocessor
```

## Requirements

- Python >= 3.11
- Dependencies are listed in requirements.txt

## Usage Examples

### 1. Search for Funds with Bonds

```python
from financial_dataset_preprocessor import (
    search_funds_having_domestic_bonds,
    get_domestic_bonds_by_fund
)

# Get all funds that have domestic bonds
fund_bonds = search_funds_having_domestic_bonds(date_ref='2025-02-21')

# Get bond details for a specific fund
fund_code = '100075'
bond_details = get_domestic_bonds_by_fund(fund_code=fund_code, date_ref='2025-02-21')
```

### 2. Analyze Fund Borrowings

```python
from financial_dataset_preprocessor import (
    search_funds_having_borrowings,
    get_borriwings_by_fund
)

# Find funds with borrowings
funds_with_borrowings = search_funds_having_borrowings(date_ref='2025-02-21')

# Get borrowing details
fund_code = '100075'
borrowing_details = get_borriwings_by_fund(fund_code=fund_code, date_ref='2025-02-21')
```

### 3. Check Repo Agreements

```python
from financial_dataset_preprocessor import (
    search_funds_having_repos,
    get_repos_by_fund
)

# Find funds with repos
funds_with_repos = search_funds_having_repos(date_ref='2025-02-21')

# Get repo details for a specific fund
fund_code = '100075'
repo_details = get_repos_by_fund(fund_code=fund_code, date_ref='2025-02-21')
```

## Development

To set up the development environment:

1. Clone the repository
2. Create a virtual environment
3. Install dependencies:

```bash
pip install -r requirements.txt
```

## License

This project is licensed under a proprietary license. All rights reserved.

### Terms of Use

- Source code viewing and forking is allowed
- Commercial use is prohibited without explicit permission
- Redistribution or modification of the code is prohibited
- Academic and research use is allowed with proper attribution

## Author

**June Young Park**  
AI Management Development Team Lead & Quant Strategist at LIFE Asset Management

LIFE Asset Management is a hedge fund management firm that integrates value investing and engagement strategies with quantitative approaches and financial technology, headquartered in Seoul, South Korea.

### Contact

- Email: juneyoungpaak@gmail.com
- Location: TWO IFC, Yeouido, Seoul

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/nailen1/financial_dataset_preprocessor",
    "name": "financial-dataset-preprocessor",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": "June Young Park",
    "author_email": "juneyoungpaak@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/86/65/d29a246caa04031101c2d285647b7bff0acac3d46e1e72a96365be00bf26/financial_dataset_preprocessor-0.1.6.tar.gz",
    "platform": null,
    "description": "# Financial Dataset Preprocessor\n\nA Python package for preprocessing financial datasets from various sources. This package provides tools and utilities for cleaning, transforming, and preparing financial data for analysis.\n\n## Features\n\n- Menu 2205 Preprocessor\n  - Corporation Name Finder\n  - Domestic Beneficiary Certificates Processing\n  - Domestic Bonds Analysis\n  - Repo Agreement Processing\n  - Borrowings Management\n- Additional preprocessors for other financial datasets (coming soon)\n\n## Installation\n\nYou can install the package using pip:\n\n```bash\npip install financial_dataset_preprocessor\n```\n\n## Requirements\n\n- Python >= 3.11\n- Dependencies are listed in requirements.txt\n\n## Usage Examples\n\n### 1. Search for Funds with Bonds\n\n```python\nfrom financial_dataset_preprocessor import (\n    search_funds_having_domestic_bonds,\n    get_domestic_bonds_by_fund\n)\n\n# Get all funds that have domestic bonds\nfund_bonds = search_funds_having_domestic_bonds(date_ref='2025-02-21')\n\n# Get bond details for a specific fund\nfund_code = '100075'\nbond_details = get_domestic_bonds_by_fund(fund_code=fund_code, date_ref='2025-02-21')\n```\n\n### 2. Analyze Fund Borrowings\n\n```python\nfrom financial_dataset_preprocessor import (\n    search_funds_having_borrowings,\n    get_borriwings_by_fund\n)\n\n# Find funds with borrowings\nfunds_with_borrowings = search_funds_having_borrowings(date_ref='2025-02-21')\n\n# Get borrowing details\nfund_code = '100075'\nborrowing_details = get_borriwings_by_fund(fund_code=fund_code, date_ref='2025-02-21')\n```\n\n### 3. Check Repo Agreements\n\n```python\nfrom financial_dataset_preprocessor import (\n    search_funds_having_repos,\n    get_repos_by_fund\n)\n\n# Find funds with repos\nfunds_with_repos = search_funds_having_repos(date_ref='2025-02-21')\n\n# Get repo details for a specific fund\nfund_code = '100075'\nrepo_details = get_repos_by_fund(fund_code=fund_code, date_ref='2025-02-21')\n```\n\n## Development\n\nTo set up the development environment:\n\n1. Clone the repository\n2. Create a virtual environment\n3. Install dependencies:\n\n```bash\npip install -r requirements.txt\n```\n\n## License\n\nThis project is licensed under a proprietary license. All rights reserved.\n\n### Terms of Use\n\n- Source code viewing and forking is allowed\n- Commercial use is prohibited without explicit permission\n- Redistribution or modification of the code is prohibited\n- Academic and research use is allowed with proper attribution\n\n## Author\n\n**June Young Park**  \nAI Management Development Team Lead & Quant Strategist at LIFE Asset Management\n\nLIFE Asset Management is a hedge fund management firm that integrates value investing and engagement strategies with quantitative approaches and financial technology, headquartered in Seoul, South Korea.\n\n### Contact\n\n- Email: juneyoungpaak@gmail.com\n- Location: TWO IFC, Yeouido, Seoul\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A package for preprocessing financial datasets, powering the Life Asset Management development team.",
    "version": "0.1.6",
    "project_urls": {
        "Homepage": "https://github.com/nailen1/financial_dataset_preprocessor"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a16b5bb86c3a6b7efe03742b422320cdab2a39aa7ffc6f58582a9454758888a1",
                "md5": "18667644f34663a36684a4e3e3f4b259",
                "sha256": "b94e35e3824e85c35490cc727e7cd9fca4c38a0f9aad1de0cedaa7d4c3881abb"
            },
            "downloads": -1,
            "filename": "financial_dataset_preprocessor-0.1.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "18667644f34663a36684a4e3e3f4b259",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 53219,
            "upload_time": "2025-02-25T01:54:00",
            "upload_time_iso_8601": "2025-02-25T01:54:00.647784Z",
            "url": "https://files.pythonhosted.org/packages/a1/6b/5bb86c3a6b7efe03742b422320cdab2a39aa7ffc6f58582a9454758888a1/financial_dataset_preprocessor-0.1.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8665d29a246caa04031101c2d285647b7bff0acac3d46e1e72a96365be00bf26",
                "md5": "4ebc344aca2f991eed35e0b09d4b4b85",
                "sha256": "2e59910215ebd97f6f11411c4017924073d8a5d3eae930b3fb4afe8768b3fae9"
            },
            "downloads": -1,
            "filename": "financial_dataset_preprocessor-0.1.6.tar.gz",
            "has_sig": false,
            "md5_digest": "4ebc344aca2f991eed35e0b09d4b4b85",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 24443,
            "upload_time": "2025-02-25T01:54:05",
            "upload_time_iso_8601": "2025-02-25T01:54:05.001979Z",
            "url": "https://files.pythonhosted.org/packages/86/65/d29a246caa04031101c2d285647b7bff0acac3d46e1e72a96365be00bf26/financial_dataset_preprocessor-0.1.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-25 01:54:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nailen1",
    "github_project": "financial_dataset_preprocessor",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "string_date_controller",
            "specs": []
        },
        {
            "name": "financial_dataset_loader",
            "specs": []
        }
    ],
    "lcname": "financial-dataset-preprocessor"
}
        
Elapsed time: 0.50164s