finch-clust


Namefinch-clust JSON
Version 0.2.0 PyPI version JSON
download
home_page
SummaryFINCH - First Integer Neighbor Clustering Hierarchy: A parameter-free fast clustering algorithm.
upload_time2023-08-24 11:25:57
maintainer
docs_urlNone
authorSaquib Sarfraz
requires_python
license
keywords finch finch clustering clustering hierarchical clustering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # First Integer Neighbor Clustering Hierarchy (FINCH) Algorithm
![alt text](https://raw.githubusercontent.com/ssarfraz/FINCH-Clustering/master/data/toy_data_vis.jpg)

FINCH is a parameter-free fast and scalable clustering algorithm. it stands out for its speed and clustering quality.
 The algorithm is described in our paper **Efficient Parameter-free Clustering Using First Neighbor Relations** published in CVPR 2019 . [Read Paper](http://openaccess.thecvf.com/content_CVPR_2019/papers/Sarfraz_Efficient_Parameter-Free_Clustering_Using_First_Neighbor_Relations_CVPR_2019_paper.pdf).


## Installation
The project is available in PyPI. To install run:

`pip install finch-clust`  

**Optional**.  Install [PyNNDescent](https://github.com/lmcinnes/pynndescent) to get first neighbours for large data

To install finch with pynndescent run:

`pip install "finch-clust[ann]"`  


## Usage:

typically you would run: 
``` 
from finch import FINCH
c, num_clust, req_c = FINCH(data)

```
You can set options e.g., required number of cluster or distance etc,

```
c, num_clust, req_c = FINCH(data, initial_rank=None, req_clust=None, distance='cosine', verbose=True)
```

For more details on meaning of input arguments check README in [finch directory](finch/README.md). 

**Matlab usage**

Correponding Matlab implementation is provided in the [matlab directory](https://github.com/ssarfraz/FINCH-Clustering/tree/master/matlab/README.md).

## Demos

The following demo notebooks are available to see the usage in clustering a dataset.

1. [Basic usage on 2D toy data](https://github.com/ssarfraz/FINCH-Clustering/blob/master/notebooks/Basic_usage.ipynb)
2. [Clustering STL-10 dataset with FINCH](https://github.com/ssarfraz/FINCH-Clustering/blob/master/notebooks/Clustering_with_FINCH.ipynb)
 






## Relevant tools built on FINCH
- [h-nne](https://github.com/koulakis/h-nne): See also our [h-nne](https://github.com/koulakis/h-nne) method which uses FINCH for fast dimenionality reduction  and visualization applications.

- [TW-FINCH](https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH): Also see our [TW-FINCH](https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH) variant which is useful for video segmentation.
## Citation 
```
@inproceedings{finch,
    author    = {M. Saquib Sarfraz and Vivek Sharma and Rainer Stiefelhagen}, 
    title     = {Efficient Parameter-free Clustering Using First Neighbor Relations}, 
    booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    pages = {8934--8943}
    year  = {2019}
}

```

**The code and FINCH algorithm is not meant for commercial use. Please contact the author for licensing information.**

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "finch-clust",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "finch,finch clustering,clustering,hierarchical clustering",
    "author": "Saquib Sarfraz",
    "author_email": "saquibsarfraz@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3b/27/200998f4636738d62c6521929dae8d1136715ef3947f11888642fdd1ccfc/finch-clust-0.2.0.tar.gz",
    "platform": null,
    "description": "# First Integer Neighbor Clustering Hierarchy (FINCH) Algorithm\n![alt text](https://raw.githubusercontent.com/ssarfraz/FINCH-Clustering/master/data/toy_data_vis.jpg)\n\nFINCH is a parameter-free fast and scalable clustering algorithm. it stands out for its speed and clustering quality.\n The algorithm is described in our paper **Efficient Parameter-free Clustering Using First Neighbor Relations** published in CVPR 2019 . [Read Paper](http://openaccess.thecvf.com/content_CVPR_2019/papers/Sarfraz_Efficient_Parameter-Free_Clustering_Using_First_Neighbor_Relations_CVPR_2019_paper.pdf).\n\n\n## Installation\nThe project is available in PyPI. To install run:\n\n`pip install finch-clust`  \n\n**Optional**.  Install [PyNNDescent](https://github.com/lmcinnes/pynndescent) to get first neighbours for large data\n\nTo install finch with pynndescent run:\n\n`pip install \"finch-clust[ann]\"`  \n\n\n## Usage:\n\ntypically you would run: \n``` \nfrom finch import FINCH\nc, num_clust, req_c = FINCH(data)\n\n```\nYou can set options e.g., required number of cluster or distance etc,\n\n```\nc, num_clust, req_c = FINCH(data, initial_rank=None, req_clust=None, distance='cosine', verbose=True)\n```\n\nFor more details on meaning of input arguments check README in [finch directory](finch/README.md). \n\n**Matlab usage**\n\nCorreponding Matlab implementation is provided in the [matlab directory](https://github.com/ssarfraz/FINCH-Clustering/tree/master/matlab/README.md).\n\n## Demos\n\nThe following demo notebooks are available to see the usage in clustering a dataset.\n\n1. [Basic usage on 2D toy data](https://github.com/ssarfraz/FINCH-Clustering/blob/master/notebooks/Basic_usage.ipynb)\n2. [Clustering STL-10 dataset with FINCH](https://github.com/ssarfraz/FINCH-Clustering/blob/master/notebooks/Clustering_with_FINCH.ipynb)\n \n\n\n\n\n\n\n## Relevant tools built on FINCH\n- [h-nne](https://github.com/koulakis/h-nne): See also our [h-nne](https://github.com/koulakis/h-nne) method which uses FINCH for fast dimenionality reduction  and visualization applications.\n\n- [TW-FINCH](https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH): Also see our [TW-FINCH](https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH) variant which is useful for video segmentation.\n## Citation \n```\n@inproceedings{finch,\n    author    = {M. Saquib Sarfraz and Vivek Sharma and Rainer Stiefelhagen}, \n    title     = {Efficient Parameter-free Clustering Using First Neighbor Relations}, \n    booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},\n    pages = {8934--8943}\n    year  = {2019}\n}\n\n```\n\n**The code and FINCH algorithm is not meant for commercial use. Please contact the author for licensing information.**\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "FINCH - First Integer Neighbor Clustering Hierarchy: A parameter-free fast clustering algorithm.",
    "version": "0.2.0",
    "project_urls": {
        "Publication": "https://openaccess.thecvf.com/content_CVPR_2019/html/Sarfraz_Efficient_Parameter-Free_Clustering_Using_First_Neighbor_Relations_CVPR_2019_paper.html",
        "Repository": "https://github.com/ssarfraz/FINCH-Clustering"
    },
    "split_keywords": [
        "finch",
        "finch clustering",
        "clustering",
        "hierarchical clustering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3b27200998f4636738d62c6521929dae8d1136715ef3947f11888642fdd1ccfc",
                "md5": "28b6055034c64f3eb0eabedb8efc823f",
                "sha256": "74f302329ed8a94370dcd7a708da70d4a73a0933569c5e7adb885c4f35cdf0a7"
            },
            "downloads": -1,
            "filename": "finch-clust-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "28b6055034c64f3eb0eabedb8efc823f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 11792,
            "upload_time": "2023-08-24T11:25:57",
            "upload_time_iso_8601": "2023-08-24T11:25:57.048657Z",
            "url": "https://files.pythonhosted.org/packages/3b/27/200998f4636738d62c6521929dae8d1136715ef3947f11888642fdd1ccfc/finch-clust-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-24 11:25:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ssarfraz",
    "github_project": "FINCH-Clustering",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "finch-clust"
}
        
Elapsed time: 0.12231s