firstbatch


Namefirstbatch JSON
Version 0.1.73 PyPI version JSON
download
home_page
SummaryFirstBatch SDK for integrating user embeddings to your project. Add real-time personalization to your AI application without user data.
upload_time2023-11-26 18:32:12
maintainer
docs_urlNone
authorandthattoo
requires_python>=3.9,<3.13
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FirstBatch SDK

The FirstBatch SDK provides an interface for integrating vector databases and powering personalized AI experiences in your application.

## Key Features

- Seamlessly manage user sessions with persistent IDs or temporary sessions
- Send signal actions like likes, clicks, etc. to update user embeddings in real-time
- Fetch personalized batches of data tailored to each user's embeddings  
- Support for multiple vector database integrations: Pinecone, Weaviate, etc.
- Built-in algorithms for common personalization use cases
- Easy configuration with Python classes and environment variables

## Getting Started

### Prerequisites

- Python 3.9+
- API keys for FirstBatch and your chosen vector database

### Installation

```
pip install firstbatch
```

## Basic Usage

1. **Initialize VectorDB of your choice**
    ```python
   api_key = os.environ["PINECONE_API_KEY"]
   env = os.environ["PINECONE_ENV"]

   pinecone.init(api_key=api_key, environment=env)
   index = pinecone.Index("your_index_name")
   
   # Init FirstBatch
   config = Config(batch_size=20)
   personalized = FirstBatch(api_key=os.environ["FIRSTBATCH_API_KEY"], config=config)
   
   personalized.add_vdb("my_db", Pinecone(index, embedding_size=1536))
    ```

### Personalization

2. **Create a session with an Algorithm suiting your needs**
    ```python 
   session = personalized.session(algorithm=AlgorithmLabel.AI_AGENTS, vdbid="my_db")
    ```

3. **Make recommendations**
    ```python
   ids, batch = personalized.batch(session)
    ```
4. **Let users add signals to shape their embeddings**
   ```python
   user_pick = 0  # User liked the first content from the previous batch.
   personalized.add_signal(session, UserAction(Signal.LIKE), ids[user_pick])
   ```

## Support

For any issues or queries contact `support@firstbatch.xyz`.

  
## Resources

- [User Embedding Guide](https://firstbatch.gitbook.io/user-embeddings/)
- [SDK Documentation](https://firstbatch.gitbook.io/firstbatch-sdk/)

Feel free to dive into the technicalities and leverage FirstBatch SDK for highly personalized user experiences.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "firstbatch",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<3.13",
    "maintainer_email": "",
    "keywords": "",
    "author": "andthattoo",
    "author_email": "omer@firstbatch.xyz",
    "download_url": "https://files.pythonhosted.org/packages/5f/2b/93c32aace30a0e817a7a9de79c31b9009f119cc2c5399e2ac62672dd6564/firstbatch-0.1.73.tar.gz",
    "platform": null,
    "description": "# FirstBatch SDK\n\nThe FirstBatch SDK provides an interface for integrating vector databases and powering personalized AI experiences in your application.\n\n## Key Features\n\n- Seamlessly manage user sessions with persistent IDs or temporary sessions\n- Send signal actions like likes, clicks, etc. to update user embeddings in real-time\n- Fetch personalized batches of data tailored to each user's embeddings  \n- Support for multiple vector database integrations: Pinecone, Weaviate, etc.\n- Built-in algorithms for common personalization use cases\n- Easy configuration with Python classes and environment variables\n\n## Getting Started\n\n### Prerequisites\n\n- Python 3.9+\n- API keys for FirstBatch and your chosen vector database\n\n### Installation\n\n```\npip install firstbatch\n```\n\n## Basic Usage\n\n1. **Initialize VectorDB of your choice**\n    ```python\n   api_key = os.environ[\"PINECONE_API_KEY\"]\n   env = os.environ[\"PINECONE_ENV\"]\n\n   pinecone.init(api_key=api_key, environment=env)\n   index = pinecone.Index(\"your_index_name\")\n   \n   # Init FirstBatch\n   config = Config(batch_size=20)\n   personalized = FirstBatch(api_key=os.environ[\"FIRSTBATCH_API_KEY\"], config=config)\n   \n   personalized.add_vdb(\"my_db\", Pinecone(index, embedding_size=1536))\n    ```\n\n### Personalization\n\n2. **Create a session with an Algorithm suiting your needs**\n    ```python \n   session = personalized.session(algorithm=AlgorithmLabel.AI_AGENTS, vdbid=\"my_db\")\n    ```\n\n3. **Make recommendations**\n    ```python\n   ids, batch = personalized.batch(session)\n    ```\n4. **Let users add signals to shape their embeddings**\n   ```python\n   user_pick = 0  # User liked the first content from the previous batch.\n   personalized.add_signal(session, UserAction(Signal.LIKE), ids[user_pick])\n   ```\n\n## Support\n\nFor any issues or queries contact `support@firstbatch.xyz`.\n\n  \n## Resources\n\n- [User Embedding Guide](https://firstbatch.gitbook.io/user-embeddings/)\n- [SDK Documentation](https://firstbatch.gitbook.io/firstbatch-sdk/)\n\nFeel free to dive into the technicalities and leverage FirstBatch SDK for highly personalized user experiences.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "FirstBatch SDK for integrating user embeddings to your project. Add real-time personalization to your AI application without user data.",
    "version": "0.1.73",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ef27d0d58f7b0caa33d9441b16ddf69de3405ddc266b00facf04cde3d12ab5b2",
                "md5": "fc5988d93ff613fd5c70dbcbb60b82a3",
                "sha256": "42d8e88dcdcfa5fddc03275c3eb97fbd55478ced67ce3538be5f9247c80b90aa"
            },
            "downloads": -1,
            "filename": "firstbatch-0.1.73-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fc5988d93ff613fd5c70dbcbb60b82a3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<3.13",
            "size": 50738,
            "upload_time": "2023-11-26T18:32:10",
            "upload_time_iso_8601": "2023-11-26T18:32:10.487590Z",
            "url": "https://files.pythonhosted.org/packages/ef/27/d0d58f7b0caa33d9441b16ddf69de3405ddc266b00facf04cde3d12ab5b2/firstbatch-0.1.73-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5f2b93c32aace30a0e817a7a9de79c31b9009f119cc2c5399e2ac62672dd6564",
                "md5": "45aa2f9e059ffc47626cc4d7ba8301f2",
                "sha256": "806d6dbe82960965cf7faa59265cd1dedad199e02d03f62539af5aacb9fe527c"
            },
            "downloads": -1,
            "filename": "firstbatch-0.1.73.tar.gz",
            "has_sig": false,
            "md5_digest": "45aa2f9e059ffc47626cc4d7ba8301f2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<3.13",
            "size": 93906,
            "upload_time": "2023-11-26T18:32:12",
            "upload_time_iso_8601": "2023-11-26T18:32:12.704790Z",
            "url": "https://files.pythonhosted.org/packages/5f/2b/93c32aace30a0e817a7a9de79c31b9009f119cc2c5399e2ac62672dd6564/firstbatch-0.1.73.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-26 18:32:12",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "firstbatch"
}
        
Elapsed time: 0.22580s