flati


Nameflati JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/ikegami-yukino/flati
SummaryFlatten nested iterable object (Pure-Python)
upload_time2019-12-31 04:03:02
maintainer
docs_urlNone
authorYukino Ikegami
requires_python
licenseMIT License
keywords flatten generator pure-python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            flati
==========
|travis| |coveralls| |pyversion| |version| |license|

Flatten nested iterable object (Pure-Python implementation)


Installation
==============

::

 $ pip install flati


Usage
============

.. code:: python

  import flati

  iterable = [(1, 2, 3), (4, (5, 6))]
  list(flati.flatten(iterable))
  # => [1, 2, 3, 4, 5, 6]

  # flati.flatten() returns a generator
  import types
  isinstance(flati.flatten(iterable), types.GeneratorType)
  # => True

  # If you want to avoid flattening specific type, then use "ignore" parameter
  iterable = [('abc'), ('def', ('g', 'hi'))]
  list(flati.flatten(iterable, ignore=str))
  # => ['abc', 'def', 'g', 'hi']

Tips
------
If you want to flatten numpy.ndarray, I recommend using following methods:

* numpy.ravel()
* ndarray.reshape(-1)
* ndarray.flatten()  # This method is a bit slow because it makes a copy


.. |travis| image:: https://travis-ci.org/ikegami-yukino/flati.svg?branch=master
    :target: https://travis-ci.org/ikegami-yukino/flati
    :alt: travis-ci.org

.. |coveralls| image:: https://coveralls.io/repos/ikegami-yukino/flati/badge.svg?branch=master&service=github
    :target: https://coveralls.io/github/ikegami-yukino/flati?branch=master
    :alt: coveralls.io

.. |pyversion| image:: https://img.shields.io/pypi/pyversions/flati.svg

.. |version| image:: https://img.shields.io/pypi/v/flati.svg
    :target: http://pypi.python.org/pypi/flati/
    :alt: latest version

.. |license| image:: https://img.shields.io/pypi/l/flati.svg
    :target: http://pypi.python.org/pypi/flati/
    :alt: license


CHANGES
=======

0.1.2 (2019-12-31)
------------------

- Support Python 3.8

0.1.1 (2019-1-28)
------------------

- Support Python 2.7

0.1 (2019-1-27)
------------------

- First release
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ikegami-yukino/flati",
    "name": "flati",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "flatten,generator,pure-python",
    "author": "Yukino Ikegami",
    "author_email": "yknikgm@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/6b/94/734b1e7640b62bdcb80e4e6ea37128efe04ef718a60a637ff8de13d7416a/flati-0.1.2.tar.gz",
    "platform": "POSIX",
    "description": "flati\n==========\n|travis| |coveralls| |pyversion| |version| |license|\n\nFlatten nested iterable object (Pure-Python implementation)\n\n\nInstallation\n==============\n\n::\n\n $ pip install flati\n\n\nUsage\n============\n\n.. code:: python\n\n  import flati\n\n  iterable = [(1, 2, 3), (4, (5, 6))]\n  list(flati.flatten(iterable))\n  # => [1, 2, 3, 4, 5, 6]\n\n  # flati.flatten() returns a generator\n  import types\n  isinstance(flati.flatten(iterable), types.GeneratorType)\n  # => True\n\n  # If you want to avoid flattening specific type, then use \"ignore\" parameter\n  iterable = [('abc'), ('def', ('g', 'hi'))]\n  list(flati.flatten(iterable, ignore=str))\n  # => ['abc', 'def', 'g', 'hi']\n\nTips\n------\nIf you want to flatten numpy.ndarray, I recommend using following methods:\n\n* numpy.ravel()\n* ndarray.reshape(-1)\n* ndarray.flatten()  # This method is a bit slow because it makes a copy\n\n\n.. |travis| image:: https://travis-ci.org/ikegami-yukino/flati.svg?branch=master\n    :target: https://travis-ci.org/ikegami-yukino/flati\n    :alt: travis-ci.org\n\n.. |coveralls| image:: https://coveralls.io/repos/ikegami-yukino/flati/badge.svg?branch=master&service=github\n    :target: https://coveralls.io/github/ikegami-yukino/flati?branch=master\n    :alt: coveralls.io\n\n.. |pyversion| image:: https://img.shields.io/pypi/pyversions/flati.svg\n\n.. |version| image:: https://img.shields.io/pypi/v/flati.svg\n    :target: http://pypi.python.org/pypi/flati/\n    :alt: latest version\n\n.. |license| image:: https://img.shields.io/pypi/l/flati.svg\n    :target: http://pypi.python.org/pypi/flati/\n    :alt: license\n\n\nCHANGES\n=======\n\n0.1.2 (2019-12-31)\n------------------\n\n- Support Python 3.8\n\n0.1.1 (2019-1-28)\n------------------\n\n- Support Python 2.7\n\n0.1 (2019-1-27)\n------------------\n\n- First release",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Flatten nested iterable object (Pure-Python)",
    "version": "0.1.2",
    "split_keywords": [
        "flatten",
        "generator",
        "pure-python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6b94734b1e7640b62bdcb80e4e6ea37128efe04ef718a60a637ff8de13d7416a",
                "md5": "d471f1bc768b5c0c9b9ec2c682d952a4",
                "sha256": "93b58c36864e4fb4706815bc31a20399755deea803e2e482dbb1083f20a04131"
            },
            "downloads": -1,
            "filename": "flati-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "d471f1bc768b5c0c9b9ec2c682d952a4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3463,
            "upload_time": "2019-12-31T04:03:02",
            "upload_time_iso_8601": "2019-12-31T04:03:02.583708Z",
            "url": "https://files.pythonhosted.org/packages/6b/94/734b1e7640b62bdcb80e4e6ea37128efe04ef718a60a637ff8de13d7416a/flati-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2019-12-31 04:03:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "ikegami-yukino",
    "github_project": "flati",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "lcname": "flati"
}
        
Elapsed time: 0.06465s