flatland-rl-optimised-code


Nameflatland-rl-optimised-code JSON
Version 3.0.16 PyPI version JSON
download
home_pagehttps://gitlab.aicrowd.com/flatland/flatland
SummaryMulti Agent Reinforcement Learning on Trains
upload_time2022-12-23 13:04:34
maintainer
docs_urlNone
authorS.P. Mohanty
requires_python
license
keywords flatland
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            🚂 Flatland
========

![Flatland](https://i.imgur.com/0rnbSLY.gif)

<p style="text-align:center">
<img alt="repository" src="https://gitlab.aicrowd.com/flatland/flatland/badges/master/pipeline.svg">
<img alt="coverage" src="https://gitlab.aicrowd.com/flatland/flatland/badges/master/coverage.svg">
</p>

Flatland is a open-source toolkit for developing and comparing Multi Agent Reinforcement Learning algorithms in little (or ridiculously large!) gridworlds.

[The official documentation](http://flatland.aicrowd.com/) contains full details about the environment and problem statement

Flatland is tested with Python 3.6, 3.7 and 3.8 on modern versions of macOS, Linux and Windows. You may encounter problems with graphical rendering if you use WSL. Your [contribution is welcome](https://flatland.aicrowd.com/misc/contributing.html) if you can help with this!  

🏆 Challenges
---

This library was developed specifically for the AIcrowd [Flatland challenges](http://flatland.aicrowd.com/research/top-challenge-solutions.html) in which we strongly encourage you to take part in!

- [Flatland 3 Challenge](https://www.aicrowd.com/challenges/flatland-3) - ONGOING!
- [AMLD 2021 Challenge](https://www.aicrowd.com/challenges/flatland)
- [NeurIPS 2020 Challenge](https://www.aicrowd.com/challenges/neurips-2020-flatland-challenge/)
- [2019 Challenge](https://www.aicrowd.com/challenges/flatland-challenge)

📦 Setup
---

### Prerequisites (optional)

Install [Anaconda](https://www.anaconda.com/distribution/) and create a new conda environment:

```console
$ conda create python=3.7 --name flatland-rl
$ conda activate flatland-rl
```

### Stable release

Install Flatland from pip:

```console
$ pip install flatland-rl
```

This is the preferred method to install Flatland, as it will always install the most recent stable release.

### From sources

The Flatland code source is available from [AIcrowd gitlab](https://gitlab.aicrowd.com/flatland/flatland).

Clone the public repository:

```console
$ git clone git@gitlab.aicrowd.com:flatland/flatland.git
```

Once you have a copy of the source, install it with:

```console
$ pip install -e .
```

### Test installation

Test that the installation works:

```console
$ flatland-demo
```

You can also run the full test suite:

```console
python setup.py test
```

👥 Credits
---

This library was developed by [SBB](https://www.sbb.ch/en/), [Deutsche Bahn](https://www.deutschebahn.com/), [SNCF](https://www.sncf.com/en), [AIcrowd](https://www.aicrowd.com/) and [numerous contributors](http://flatland.aicrowd.com/misc/credits.html) and AIcrowd research fellows from the AIcrowd community.

➕ Contributions
---
Please follow the [Contribution Guidelines](https://flatland.aicrowd.com/misc/contributing.html) for more details on how you can successfully contribute to the project. We enthusiastically look forward to your contributions!

💬 Communication
---

* [Discord Channel](https://discord.com/invite/hCR3CZG)
* [Discussion Forum](https://discourse.aicrowd.com/c/neurips-2020-flatland-challenge)
* [Issue Tracker](https://gitlab.aicrowd.com/flatland/flatland/issues/)

🔗 Partners
---

<a href="https://sbb.ch" target="_blank" style="margin-right:30px"><img src="https://annpr2020.ch/wp-content/uploads/2020/06/SBB.png" alt="SBB" width="140"/></a> 
<a href="https://www.deutschebahn.com/" target="_blank" style="margin-right:30px"><img src="https://i.imgur.com/pjTki15.png" alt="DB"  width="140"/></a>
<a href="https://www.sncf.com/en" target="_blank" style="margin-right:30px"><img src="https://iconape.com/wp-content/png_logo_vector/logo-sncf.png" alt="SNCF"  width="140"/></a>
<a href="https://www.aicrowd.com" target="_blank"><img src="https://i.imgur.com/kBZQGI9.png" alt="AIcrowd"  width="140"/></a>



            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.aicrowd.com/flatland/flatland",
    "name": "flatland-rl-optimised-code",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "flatland",
    "author": "S.P. Mohanty",
    "author_email": "mohanty@aicrowd.com",
    "download_url": "",
    "platform": null,
    "description": "\ud83d\ude82 Flatland\n========\n\n![Flatland](https://i.imgur.com/0rnbSLY.gif)\n\n<p style=\"text-align:center\">\n<img alt=\"repository\" src=\"https://gitlab.aicrowd.com/flatland/flatland/badges/master/pipeline.svg\">\n<img alt=\"coverage\" src=\"https://gitlab.aicrowd.com/flatland/flatland/badges/master/coverage.svg\">\n</p>\n\nFlatland is a open-source toolkit for developing and comparing Multi Agent Reinforcement Learning algorithms in little (or ridiculously large!) gridworlds.\n\n[The official documentation](http://flatland.aicrowd.com/) contains full details about the environment and problem statement\n\nFlatland is tested with Python 3.6, 3.7 and 3.8 on modern versions of macOS, Linux and Windows. You may encounter problems with graphical rendering if you use WSL. Your [contribution is welcome](https://flatland.aicrowd.com/misc/contributing.html) if you can help with this!  \n\n\ud83c\udfc6 Challenges\n---\n\nThis library was developed specifically for the AIcrowd [Flatland challenges](http://flatland.aicrowd.com/research/top-challenge-solutions.html) in which we strongly encourage you to take part in!\n\n- [Flatland 3 Challenge](https://www.aicrowd.com/challenges/flatland-3) - ONGOING!\n- [AMLD 2021 Challenge](https://www.aicrowd.com/challenges/flatland)\n- [NeurIPS 2020 Challenge](https://www.aicrowd.com/challenges/neurips-2020-flatland-challenge/)\n- [2019 Challenge](https://www.aicrowd.com/challenges/flatland-challenge)\n\n\ud83d\udce6 Setup\n---\n\n### Prerequisites (optional)\n\nInstall [Anaconda](https://www.anaconda.com/distribution/) and create a new conda environment:\n\n```console\n$ conda create python=3.7 --name flatland-rl\n$ conda activate flatland-rl\n```\n\n### Stable release\n\nInstall Flatland from pip:\n\n```console\n$ pip install flatland-rl\n```\n\nThis is the preferred method to install Flatland, as it will always install the most recent stable release.\n\n### From sources\n\nThe Flatland code source is available from [AIcrowd gitlab](https://gitlab.aicrowd.com/flatland/flatland).\n\nClone the public repository:\n\n```console\n$ git clone git@gitlab.aicrowd.com:flatland/flatland.git\n```\n\nOnce you have a copy of the source, install it with:\n\n```console\n$ pip install -e .\n```\n\n### Test installation\n\nTest that the installation works:\n\n```console\n$ flatland-demo\n```\n\nYou can also run the full test suite:\n\n```console\npython setup.py test\n```\n\n\ud83d\udc65 Credits\n---\n\nThis library was developed by [SBB](https://www.sbb.ch/en/), [Deutsche Bahn](https://www.deutschebahn.com/), [SNCF](https://www.sncf.com/en), [AIcrowd](https://www.aicrowd.com/) and [numerous contributors](http://flatland.aicrowd.com/misc/credits.html) and AIcrowd research fellows from the AIcrowd community.\n\n\u2795 Contributions\n---\nPlease follow the [Contribution Guidelines](https://flatland.aicrowd.com/misc/contributing.html) for more details on how you can successfully contribute to the project. We enthusiastically look forward to your contributions!\n\n\ud83d\udcac Communication\n---\n\n* [Discord Channel](https://discord.com/invite/hCR3CZG)\n* [Discussion Forum](https://discourse.aicrowd.com/c/neurips-2020-flatland-challenge)\n* [Issue Tracker](https://gitlab.aicrowd.com/flatland/flatland/issues/)\n\n\ud83d\udd17 Partners\n---\n\n<a href=\"https://sbb.ch\" target=\"_blank\" style=\"margin-right:30px\"><img src=\"https://annpr2020.ch/wp-content/uploads/2020/06/SBB.png\" alt=\"SBB\" width=\"140\"/></a> \n<a href=\"https://www.deutschebahn.com/\" target=\"_blank\" style=\"margin-right:30px\"><img src=\"https://i.imgur.com/pjTki15.png\" alt=\"DB\"  width=\"140\"/></a>\n<a href=\"https://www.sncf.com/en\" target=\"_blank\" style=\"margin-right:30px\"><img src=\"https://iconape.com/wp-content/png_logo_vector/logo-sncf.png\" alt=\"SNCF\"  width=\"140\"/></a>\n<a href=\"https://www.aicrowd.com\" target=\"_blank\"><img src=\"https://i.imgur.com/kBZQGI9.png\" alt=\"AIcrowd\"  width=\"140\"/></a>\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Multi Agent Reinforcement Learning on Trains",
    "version": "3.0.16",
    "split_keywords": [
        "flatland"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "83e4546a8b6606cc3b7e21356813ac87",
                "sha256": "4f3430cb117328cb12e0ed2d5a17908903a13c812eeff7632d3e1865945e5d77"
            },
            "downloads": -1,
            "filename": "flatland_rl_optimised_code-3.0.16-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "83e4546a8b6606cc3b7e21356813ac87",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 1850254,
            "upload_time": "2022-12-23T13:04:34",
            "upload_time_iso_8601": "2022-12-23T13:04:34.100249Z",
            "url": "https://files.pythonhosted.org/packages/26/db/a32d966e748a421c912a1afc3e848c5f8f12daaa86e82fac73d4017c5af6/flatland_rl_optimised_code-3.0.16-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-23 13:04:34",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "flatland-rl-optimised-code"
}
        
Elapsed time: 0.28124s