flwr-monitoring


Nameflwr-monitoring JSON
Version 0.2.0 PyPI version JSON
download
home_pagehttps://github.com/kandola-network/KanFL
SummaryA package for monitoring Flower federated learning framework using Prometheus and WandB
upload_time2024-09-03 03:27:38
maintainerNone
docs_urlNone
authorKandola
requires_python>=3.7
licenseMIT
keywords flower monitoring federated learning prometheus wandb
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Federated Learning Monitoring Library

## Overview

The Federated Learning Monitoring Library is designed to provide comprehensive monitoring capabilities for federated learning processes. This library extends existing federated learning strategies (like FedAvg) with monitoring tools such as Prometheus. It allows users to track various metrics related to training, communication, and resource usage, providing deep insights into the performance and efficiency of federated learning systems.

## Features

- **Custom Monitoring Strategy**: Wraps existing federated learning strategies with monitoring capabilities.
- **Prometheus Integration**: Supports Prometheus as a monitoring tool out-of-the-box.
- **Resource Usage Tracking**: Monitors CPU, memory, and GPU usage.
- **Comprehensive Metrics**: Tracks training time, communication time, client participation, accuracy, loss, and more.

## Installation

To install the library, clone the repository and install the dependencies using pip:

```bash
git clone git@github.com:kandola-network/KanFL.git
cd KanFL
pip install -r requirements.txt


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kandola-network/KanFL",
    "name": "flwr-monitoring",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "Vishal Gupta <vishalsg42+pip@gmail.com>",
    "keywords": "flower, monitoring, federated learning, prometheus, wandb",
    "author": "Kandola",
    "author_email": "Vishal Gupta <vishalsg42+pip@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/a7/87/188592d8f802bc1364baa4f425a2d2a2a475d10e7598c91ed7cc9cdf2965/flwr_monitoring-0.2.0.tar.gz",
    "platform": null,
    "description": "# Federated Learning Monitoring Library\n\n## Overview\n\nThe Federated Learning Monitoring Library is designed to provide comprehensive monitoring capabilities for federated learning processes. This library extends existing federated learning strategies (like FedAvg) with monitoring tools such as Prometheus. It allows users to track various metrics related to training, communication, and resource usage, providing deep insights into the performance and efficiency of federated learning systems.\n\n## Features\n\n- **Custom Monitoring Strategy**: Wraps existing federated learning strategies with monitoring capabilities.\n- **Prometheus Integration**: Supports Prometheus as a monitoring tool out-of-the-box.\n- **Resource Usage Tracking**: Monitors CPU, memory, and GPU usage.\n- **Comprehensive Metrics**: Tracks training time, communication time, client participation, accuracy, loss, and more.\n\n## Installation\n\nTo install the library, clone the repository and install the dependencies using pip:\n\n```bash\ngit clone git@github.com:kandola-network/KanFL.git\ncd KanFL\npip install -r requirements.txt\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A package for monitoring Flower federated learning framework using Prometheus and WandB",
    "version": "0.2.0",
    "project_urls": {
        "Homepage": "https://github.com/kandola-network/KanFL"
    },
    "split_keywords": [
        "flower",
        " monitoring",
        " federated learning",
        " prometheus",
        " wandb"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7a3f12b19fd2c225f0f0ea76b835b25fb832bfd6c44e78cb8082afed987db389",
                "md5": "ed38a0df16e26c60d651728e860b882a",
                "sha256": "6c84224c01be46bf439301f817ff13214fcb85984da757f39c2f1cfcee07ae53"
            },
            "downloads": -1,
            "filename": "flwr_monitoring-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ed38a0df16e26c60d651728e860b882a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 12036,
            "upload_time": "2024-09-03T03:27:37",
            "upload_time_iso_8601": "2024-09-03T03:27:37.393782Z",
            "url": "https://files.pythonhosted.org/packages/7a/3f/12b19fd2c225f0f0ea76b835b25fb832bfd6c44e78cb8082afed987db389/flwr_monitoring-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a787188592d8f802bc1364baa4f425a2d2a2a475d10e7598c91ed7cc9cdf2965",
                "md5": "0ef2ff6d276a3e2cb3a7dc52df2c29d1",
                "sha256": "f1ed495722485db29d87a8e5c6c31d4887ae350a346a7b9dadd360fe1641e57d"
            },
            "downloads": -1,
            "filename": "flwr_monitoring-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "0ef2ff6d276a3e2cb3a7dc52df2c29d1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 8924,
            "upload_time": "2024-09-03T03:27:38",
            "upload_time_iso_8601": "2024-09-03T03:27:38.852531Z",
            "url": "https://files.pythonhosted.org/packages/a7/87/188592d8f802bc1364baa4f425a2d2a2a475d10e7598c91ed7cc9cdf2965/flwr_monitoring-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-03 03:27:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kandola-network",
    "github_project": "KanFL",
    "github_not_found": true,
    "lcname": "flwr-monitoring"
}
        
Elapsed time: 0.65780s