## fmpdistribution - Package for computing probabilities for discrete and continuous random variables.
**fmpdistribution** package provides different functions to calculate probability and common statistics for **Poisson**, **Binomial**, **Normal**, **Multinomial**, and **Exponential** distributions. The package contains five classes, one for each probability distribution.
***Class Poisson***
**Method Summary**
| **Methods** |**Description** |
| ------------ | ------------ |
| **pdf(x,mu)** |Probability Density Function |
| **cdf(x,mu,steps=False)** |Cummulative Distribution Function |
| **sf(x,mu)** |Survival Function (1-cdf) |
| **stats(mu)** | Mean, Median, Mode ,Variance, Skewness, Kurtosis |
**Parameters**:
**x**: value of the poisson random variable.
**mu**: average number of occurrences in specific interval.
**steps**: shows all probabilities from 0 to x when it is True.
***Class Binomial***
**Method Summary**
| **Methods** |**Description** |
| ------------ | ------------ |
| **pdf(x,n,p)** |Probability Density Function |
| **cdf(x,n,p,steps=False)** | Cummulative Distribution Function |
| **sf(x,n,p)** | Survival Function (1-cdf) |
| **stats(n,p)** |Mean, Median, Mode ,Variance, Skewness, Kurtosis |
**Parameters**:
**x**: value of the binomial random variable.
**n**: number of trials.
**p**: probability of success.
**steps**: shows all probabilities from 0 to x when it is True.
***Class Normal***
**Method Summary**
| **Methods** |**Description** |
| ------------ | ------------ |
| **pdf(x,mu=0,sd=1)** |Probability Density Function |
| **cdf(x,mu=0,sd=1)** | Cummulative Distribution Function |
| **sf(x,mu=0,sd=1)** | Survival Function (1-cdf) |
| **stats(mu=0,sd=1)** | Mean, Median, Mode ,Variance, Skewness, Kurtosis |
**Parameters**:
**x**: value of the normal random variable.
**mu**: mean of the normal distribution.
**sd**: standard deviation of the normal distribution.
***Class Exponential***
**Method Summary**
| **Methods** |**Description** |
| ------------ | ------------ |
| **pdf(x,mu)** |Probability density function |
| **cdf(x,mu)** | Probability distribution function |
| **sf(x,mu)** | Survival function (1-cdf) |
| **stats(x,mu)** |Mean, Median, Mode ,Variance, Skewness, Kurtosis |
**Parameters**:
**x**: value of random variable follows exponential distribution.
**mu**: average number of occurrences.
***Class Multinomial***
**Method Summary**
| **Methods** |**Description** |
| ------------ | ------------ |
| **pdf(n,outcomes,prob)** |Probability density function |
|**stats(n,outcomes,prob)** | Mean, Variance |
| **cov(n,outcomes,prob)** | Covariance |
**Parameters**:
**n**: total number of events.
**outcomes**: number of occurrences of each event.
**prob**: probability of each event.
#### Dependencies:
- No external package is required
#### Installation:
In oder to compute probabilities, we must install **fmpdistribution** . Use the package installer (**PIP**) or package management system (**conda**) to install **fmpdistribution**.
pip install fmpdistribution
python -m pip install fmpdistribution
conda install fmpdistribution
#### How to use:
import the probability distribution calss from fmpdistribution
call the required function
provide input
execute the code
####Example-1:
A person receives on average 3 emails per hour. What the probability that he will receive
(a) 4 emails in the next hour
(b) Less than or equal to 4
(c) Greater than 4
#### Solution:
from fmpdistribution.Poisson import Poisson
pp = Poisson()
mu = 3
print(pp.pdf(4,mu)) # P(X=4)
0.168031
print(pp.cdf(4,mu)) # P(X<=4)
0.815263
print(pp.sf(4,mu)) # P(X>4)
or print(1-pp.cdf(4,mu))
0.184736
#To get common statistics:
print(pp.stats(mu))
{'mean': 3, 'median': 3.326667, 'mode': 3, 'variance': 3, 'skewnes': 0.577350, 'kurtosis': 0.333333}
####Example-2:
In a computer science class 40% students belong to Asia, 50% to Europe and 10% to USA. If we select a random sample of 10 students, what is the probability that 3 candidates from Asia, 5 from Europe and 2 from USA?
**Solution**:
from fmpdistribution.Multinomial import Multinomial
import numpy as np`
mn = Multinomial()
n = 10
x = [3,5,2]
p = [0.40,0.50,0.10]
print(mn.pdf(n,x,p)) # probability density function
print(np.array(mn.cov(n,p))) # covariance
0.050400
[[ 2.4 -2. -0.4]
[-2. 2.5 -0.5]
[-0.4 -0.5 0.9]]
#### Version History
1.0.0 (Initial release)
#### License
This project is licensed under the **MIT** License - see the LICENSE.txt file for details
Raw data
{
"_id": null,
"home_page": "https://github.com/fmkundi/kundidocs",
"name": "fmpdistribution",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,statistics,probability,probability distribution,poisson,binomial,normal,multinomial,exponential",
"author": "Fazal Masud Kundi",
"author_email": "fmkundi@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/00/9b/827d4d7bfc58765e55e8111654b67377467ce1e20a7013d4532d6ee881d1/fmpdistribution-1.0.2.tar.gz",
"platform": null,
"description": "## fmpdistribution - Package for computing probabilities for discrete and continuous random variables.\r\n**fmpdistribution** package provides different functions to calculate probability and common statistics for **Poisson**, **Binomial**, **Normal**, **Multinomial**, and **Exponential** distributions. The package contains five classes, one for each probability distribution. \r\n***Class Poisson***\r\n\r\n**Method Summary**\r\n| **Methods** |**Description** |\r\n| ------------ | ------------ |\r\n| **pdf(x,mu)** |Probability Density Function |\r\n| **cdf(x,mu,steps=False)** |Cummulative Distribution Function |\r\n| **sf(x,mu)** |Survival Function (1-cdf) |\r\n| **stats(mu)** | Mean, Median, Mode ,Variance, Skewness, Kurtosis |\r\n**Parameters**:\r\n**x**: value of the poisson random variable. \r\n**mu**: average number of occurrences in specific interval.\r\n**steps**: shows all probabilities from 0 to x when it is True.\r\n\r\n***Class Binomial***\r\n\r\n**Method Summary**\r\n| **Methods** |**Description** |\r\n| ------------ | ------------ |\r\n| **pdf(x,n,p)** |Probability Density Function |\r\n| **cdf(x,n,p,steps=False)** | Cummulative Distribution Function |\r\n| **sf(x,n,p)** | Survival Function (1-cdf) |\r\n| **stats(n,p)** |Mean, Median, Mode ,Variance, Skewness, Kurtosis |\r\n**Parameters**:\r\n**x**: value of the binomial random variable.\r\n**n**: number of trials.\r\n**p**: probability of success.\r\n**steps**: shows all probabilities from 0 to x when it is True.\r\n\r\n***Class Normal***\r\n\r\n**Method Summary**\r\n| **Methods** |**Description** |\r\n| ------------ | ------------ |\r\n| **pdf(x,mu=0,sd=1)** |Probability Density Function |\r\n| **cdf(x,mu=0,sd=1)** | Cummulative Distribution Function |\r\n| **sf(x,mu=0,sd=1)** | Survival Function (1-cdf) |\r\n| **stats(mu=0,sd=1)** | Mean, Median, Mode ,Variance, Skewness, Kurtosis |\r\n**Parameters**:\r\n**x**: value of the normal random variable.\r\n**mu**: mean of the normal distribution.\r\n**sd**: standard deviation of the normal distribution.\r\n\r\n***Class Exponential***\r\n\r\n**Method Summary**\r\n| **Methods** |**Description** |\r\n| ------------ | ------------ |\r\n| **pdf(x,mu)** |Probability density function |\r\n| **cdf(x,mu)** | Probability distribution function |\r\n| **sf(x,mu)** | Survival function (1-cdf) |\r\n| **stats(x,mu)** |Mean, Median, Mode ,Variance, Skewness, Kurtosis |\r\n**Parameters**:\r\n**x**: value of random variable follows exponential distribution.\r\n**mu**: average number of occurrences.\r\n\r\n***Class Multinomial***\r\n\r\n**Method Summary**\r\n| **Methods** |**Description** |\r\n| ------------ | ------------ |\r\n| **pdf(n,outcomes,prob)** |Probability density function |\r\n|**stats(n,outcomes,prob)** | Mean, Variance |\r\n| **cov(n,outcomes,prob)** | Covariance |\r\n**Parameters**:\r\n**n**: total number of events.\r\n**outcomes**: number of occurrences of each event.\r\n**prob**: probability of each event.\r\n#### Dependencies:\r\n- No external package is required\r\n\r\n#### Installation:\r\nIn oder to compute probabilities, we must install **fmpdistribution** . Use the package installer (**PIP**) or package management system (**conda**) to install **fmpdistribution**.\r\n\r\n pip install fmpdistribution\r\n python -m pip install fmpdistribution\r\n conda install fmpdistribution \r\n#### How to use:\r\n import the probability distribution calss from fmpdistribution\r\n\tcall the required function\r\n provide input \r\n execute the code\r\n\r\n####Example-1:\r\nA person receives on average 3 emails per hour. What the probability that he will receive\r\n(a) 4 emails in the next hour\r\n(b) Less than or equal to 4\r\n(c) Greater than 4\r\n#### Solution:\r\n from fmpdistribution.Poisson import Poisson\r\n pp = Poisson()\r\n mu = 3\r\n print(pp.pdf(4,mu)) # P(X=4)\r\n 0.168031\r\n print(pp.cdf(4,mu)) # P(X<=4)\r\n 0.815263\r\n print(pp.sf(4,mu)) # P(X>4)\r\n or print(1-pp.cdf(4,mu))\r\n 0.184736\r\n #To get common statistics:\r\n print(pp.stats(mu))\r\n {'mean': 3, 'median': 3.326667, 'mode': 3, 'variance': 3, 'skewnes': 0.577350, 'kurtosis': 0.333333} \r\n####Example-2:\r\nIn a computer science class 40% students belong to Asia, 50% to Europe and 10% to USA. If we select a random sample of 10 students, what is the probability that 3 candidates from Asia, 5 from Europe and 2 from USA?\r\n\r\n**Solution**:\r\n\r\n from fmpdistribution.Multinomial import Multinomial\r\n import numpy as np`\r\n mn = Multinomial()\r\n n = 10\r\n x = [3,5,2]\r\n p = [0.40,0.50,0.10]\r\n print(mn.pdf(n,x,p)) # probability density function\r\n print(np.array(mn.cov(n,p))) # covariance\r\n\t\t\r\n 0.050400\r\n [[ 2.4 -2. -0.4]\r\n [-2. 2.5 -0.5]\r\n [-0.4 -0.5 0.9]]\r\n\r\n#### Version History\r\n1.0.0 (Initial release)\r\n\r\n#### License\r\nThis project is licensed under the **MIT** License - see the LICENSE.txt file for details\r\n",
"bugtrack_url": null,
"license": "",
"summary": "A Python package for calculating pdf, cdf, and sf for Poisson, Binomial,Normal, Multinomial and Exponential distributions.",
"version": "1.0.2",
"split_keywords": [
"python",
"statistics",
"probability",
"probability distribution",
"poisson",
"binomial",
"normal",
"multinomial",
"exponential"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c1943b6ba6b3b06dc2901ee7e920959d95a50f6e345a25c3317039243018bd7c",
"md5": "deb0455fd80241f5d120c8a22b54db00",
"sha256": "cfd7b742a942a1391063666892f02186881403c647f32742149f58d32647e4c5"
},
"downloads": -1,
"filename": "fmpdistribution-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "deb0455fd80241f5d120c8a22b54db00",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3729,
"upload_time": "2023-01-19T07:47:03",
"upload_time_iso_8601": "2023-01-19T07:47:03.189645Z",
"url": "https://files.pythonhosted.org/packages/c1/94/3b6ba6b3b06dc2901ee7e920959d95a50f6e345a25c3317039243018bd7c/fmpdistribution-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "009b827d4d7bfc58765e55e8111654b67377467ce1e20a7013d4532d6ee881d1",
"md5": "c911a10399b5bbb02b17f9f40f6d5aad",
"sha256": "8dd297efc36e0e81e99f3d20ea15f1eb06ea5508e4320582d3fa653514a09d9d"
},
"downloads": -1,
"filename": "fmpdistribution-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "c911a10399b5bbb02b17f9f40f6d5aad",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5152,
"upload_time": "2023-01-19T07:47:05",
"upload_time_iso_8601": "2023-01-19T07:47:05.209760Z",
"url": "https://files.pythonhosted.org/packages/00/9b/827d4d7bfc58765e55e8111654b67377467ce1e20a7013d4532d6ee881d1/fmpdistribution-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-19 07:47:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "fmkundi",
"github_project": "kundidocs",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "fmpdistribution"
}