forayer


Nameforayer JSON
Version 0.4.4 PyPI version JSON
download
home_pagehttps://github.com/dobraczka/forayer
SummaryFirst aid utilies for knowledge graph exploration with an entity centric approach
upload_time2023-03-28 12:29:39
maintainer
docs_urlNone
authorDaniel Obraczka
requires_python>=3.8,<4.0
licenseMIT
keywords knowledge graph entity resolution
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
<img src="https://github.com/dobraczka/forayer/raw/main/docs/forayerlogo.png" alt="forayer logo", width=200/>
</p>

<h2 align="center"> forayer</h2>

<p align="center">
<a href="https://github.com/dobraczka/forayer/actions/workflows/main.yml"><img alt="Tests" src="https://github.com/dobraczka/forayer/actions/workflows/tests.yml/badge.svg?branch=main"></a>
<a href="https://github.com/dobraczka/forayer/actions/workflows/quality.yml"><img alt="Linting" src="https://github.com/dobraczka/forayer/actions/workflows/quality.yml/badge.svg?branch=main"></a>
<a><img alt="Test coverage" src="https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/dobraczka/6d07d95e43929bcbf9d031c2c8f2015f/raw/forayer_test_gist.json"></a>
<a href="https://pypi.org/project/forayer"/><img alt="Stable python versions" src="https://img.shields.io/pypi/pyversions/forayer"></a>
<a href="https://github.com/dobraczka/forayer/blob/main/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue"></a>
<a href="https://github.com/psf/black"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
</p>

About
=====
Forayer is a library of **f**irst aid utilities for kn**o**wledge g**r**aph explor**a**tion with an entit**y** c**e**ntric app**r**oach.
It is intended to make data integration of knowledge graphs easier. With entities as first class citizens forayer is a toolset to aid in knowledge graph exploration for data integration and specifically entity resolution.

You can easily load pre-existing entity resolution tasks:

```python
  >>> from forayer.datasets import OpenEADataset
  >>> ds = OpenEADataset(ds_pair="D_W",size="15K",version=1)
  >>> ds.er_task
  ERTask({DBpedia: (# entities: 15000, # entities_with_rel: 15000, # rel: 13359,
  # entities_with_attributes: 13782, # attributes: 13782, # attr_values: 24995),
  Wikidata: (# entities: 15000, # entities_with_rel: 15000, # rel: 13554,
  # entities_with_attributes: 14376, # attributes: 14376, # attr_values: 114107)},
  ClusterHelper(# elements:30000, # clusters:15000))
```

This entity resolution task holds 2 knowledge graphs and a cluster of known matches. You can search in knowledge graphs:

```python
  >>> ds.er_task["DBpedia"].search("Dorothea")
  KG(entities={'http://dbpedia.org/resource/E801200': 
  {'http://dbpedia.org/ontology/activeYearsStartYear': '"1948"^^<http://www.w3.org/2001/XMLSchema#gYear>',
  'http://dbpedia.org/ontology/activeYearsEndYear': '"2008"^^<http://www.w3.org/2001/XMLSchema#gYear>',
  'http://dbpedia.org/ontology/birthName': 'Dorothea Carothers Allen',
  'http://dbpedia.org/ontology/alias': 'Allen, Dorothea Carothers',
  'http://dbpedia.org/ontology/birthYear': '"1923"^^<http://www.w3.org/2001/XMLSchema#gYear>',
  'http://purl.org/dc/elements/1.1/description': 'Film editor',
  'http://dbpedia.org/ontology/birthDate': '"1923-12-03"^^<http://www.w3.org/2001/XMLSchema#date>',
  'http://dbpedia.org/ontology/deathDate': '"2010-04-17"^^<http://www.w3.org/2001/XMLSchema#date>', 
  'http://dbpedia.org/ontology/deathYear': '"2010"^^<http://www.w3.org/2001/XMLSchema#gYear>'}}, rel={}, name=DBpedia)
```

Decide to work with a smaller snippet of the resolution task:

```python
  >>> ert_sample = ds.er_task.sample(100)
  >>> ert_sample
  ERTask({DBpedia: (# entities: 100, # entities_with_rel: 6, # rel: 4,
  # entities_with_attributes: 99, # attributes: 99, # attr_values: 274),
  Wikidata: (# entities: 100, # entities_with_rel: 4, # rel: 4,
  # entities_with_attributes: 100, # attributes: 100, # attr_values: 797)},
  ClusterHelper(# elements:200, # clusters:100))
```

And much more can be found in the [user guide](https://forayer.readthedocs.io/en/latest/source/user_guide.html).

Installation
============

You can install forayer via pip:

```bash
  pip install forayer
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dobraczka/forayer",
    "name": "forayer",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<4.0",
    "maintainer_email": "",
    "keywords": "knowledge graph,entity resolution",
    "author": "Daniel Obraczka",
    "author_email": "obraczka@informatik.uni-leipzig.de",
    "download_url": "https://files.pythonhosted.org/packages/db/ae/196afe615e2a98f28a20b424951c2b6b866751016e1087a1d703613c5efb/forayer-0.4.4.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n<img src=\"https://github.com/dobraczka/forayer/raw/main/docs/forayerlogo.png\" alt=\"forayer logo\", width=200/>\n</p>\n\n<h2 align=\"center\"> forayer</h2>\n\n<p align=\"center\">\n<a href=\"https://github.com/dobraczka/forayer/actions/workflows/main.yml\"><img alt=\"Tests\" src=\"https://github.com/dobraczka/forayer/actions/workflows/tests.yml/badge.svg?branch=main\"></a>\n<a href=\"https://github.com/dobraczka/forayer/actions/workflows/quality.yml\"><img alt=\"Linting\" src=\"https://github.com/dobraczka/forayer/actions/workflows/quality.yml/badge.svg?branch=main\"></a>\n<a><img alt=\"Test coverage\" src=\"https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/dobraczka/6d07d95e43929bcbf9d031c2c8f2015f/raw/forayer_test_gist.json\"></a>\n<a href=\"https://pypi.org/project/forayer\"/><img alt=\"Stable python versions\" src=\"https://img.shields.io/pypi/pyversions/forayer\"></a>\n<a href=\"https://github.com/dobraczka/forayer/blob/main/LICENSE\"><img alt=\"MIT License\" src=\"https://img.shields.io/badge/license-MIT-blue\"></a>\n<a href=\"https://github.com/psf/black\"><img alt=\"Code style: black\" src=\"https://img.shields.io/badge/code%20style-black-000000.svg\"></a>\n</p>\n\nAbout\n=====\nForayer is a library of **f**irst aid utilities for kn**o**wledge g**r**aph explor**a**tion with an entit**y** c**e**ntric app**r**oach.\nIt is intended to make data integration of knowledge graphs easier. With entities as first class citizens forayer is a toolset to aid in knowledge graph exploration for data integration and specifically entity resolution.\n\nYou can easily load pre-existing entity resolution tasks:\n\n```python\n  >>> from forayer.datasets import OpenEADataset\n  >>> ds = OpenEADataset(ds_pair=\"D_W\",size=\"15K\",version=1)\n  >>> ds.er_task\n  ERTask({DBpedia: (# entities: 15000, # entities_with_rel: 15000, # rel: 13359,\n  # entities_with_attributes: 13782, # attributes: 13782, # attr_values: 24995),\n  Wikidata: (# entities: 15000, # entities_with_rel: 15000, # rel: 13554,\n  # entities_with_attributes: 14376, # attributes: 14376, # attr_values: 114107)},\n  ClusterHelper(# elements:30000, # clusters:15000))\n```\n\nThis entity resolution task holds 2 knowledge graphs and a cluster of known matches. You can search in knowledge graphs:\n\n```python\n  >>> ds.er_task[\"DBpedia\"].search(\"Dorothea\")\n  KG(entities={'http://dbpedia.org/resource/E801200': \n  {'http://dbpedia.org/ontology/activeYearsStartYear': '\"1948\"^^<http://www.w3.org/2001/XMLSchema#gYear>',\n  'http://dbpedia.org/ontology/activeYearsEndYear': '\"2008\"^^<http://www.w3.org/2001/XMLSchema#gYear>',\n  'http://dbpedia.org/ontology/birthName': 'Dorothea Carothers Allen',\n  'http://dbpedia.org/ontology/alias': 'Allen, Dorothea Carothers',\n  'http://dbpedia.org/ontology/birthYear': '\"1923\"^^<http://www.w3.org/2001/XMLSchema#gYear>',\n  'http://purl.org/dc/elements/1.1/description': 'Film editor',\n  'http://dbpedia.org/ontology/birthDate': '\"1923-12-03\"^^<http://www.w3.org/2001/XMLSchema#date>',\n  'http://dbpedia.org/ontology/deathDate': '\"2010-04-17\"^^<http://www.w3.org/2001/XMLSchema#date>', \n  'http://dbpedia.org/ontology/deathYear': '\"2010\"^^<http://www.w3.org/2001/XMLSchema#gYear>'}}, rel={}, name=DBpedia)\n```\n\nDecide to work with a smaller snippet of the resolution task:\n\n```python\n  >>> ert_sample = ds.er_task.sample(100)\n  >>> ert_sample\n  ERTask({DBpedia: (# entities: 100, # entities_with_rel: 6, # rel: 4,\n  # entities_with_attributes: 99, # attributes: 99, # attr_values: 274),\n  Wikidata: (# entities: 100, # entities_with_rel: 4, # rel: 4,\n  # entities_with_attributes: 100, # attributes: 100, # attr_values: 797)},\n  ClusterHelper(# elements:200, # clusters:100))\n```\n\nAnd much more can be found in the [user guide](https://forayer.readthedocs.io/en/latest/source/user_guide.html).\n\nInstallation\n============\n\nYou can install forayer via pip:\n\n```bash\n  pip install forayer\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "First aid utilies for knowledge graph exploration with an entity centric approach",
    "version": "0.4.4",
    "split_keywords": [
        "knowledge graph",
        "entity resolution"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6757a4b802464a5863c925a028c1bfb42c3c961926ab8fd524182aab7310b1d2",
                "md5": "3f159d3bea9b3521859a75fc859217e4",
                "sha256": "947368aba600d3875747ac33611dd2b1445c71ed60bfc1af5681ad213b367ce3"
            },
            "downloads": -1,
            "filename": "forayer-0.4.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3f159d3bea9b3521859a75fc859217e4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<4.0",
            "size": 37270,
            "upload_time": "2023-03-28T12:29:38",
            "upload_time_iso_8601": "2023-03-28T12:29:38.246046Z",
            "url": "https://files.pythonhosted.org/packages/67/57/a4b802464a5863c925a028c1bfb42c3c961926ab8fd524182aab7310b1d2/forayer-0.4.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dbae196afe615e2a98f28a20b424951c2b6b866751016e1087a1d703613c5efb",
                "md5": "0edbfa810616a6fc48406b8c4d57a1a2",
                "sha256": "b4ae8202d10fbf8b55a7ed0cedcf10984f6cd8ac3dbe34c4eb071ef363f0fd0f"
            },
            "downloads": -1,
            "filename": "forayer-0.4.4.tar.gz",
            "has_sig": false,
            "md5_digest": "0edbfa810616a6fc48406b8c4d57a1a2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<4.0",
            "size": 32198,
            "upload_time": "2023-03-28T12:29:39",
            "upload_time_iso_8601": "2023-03-28T12:29:39.759968Z",
            "url": "https://files.pythonhosted.org/packages/db/ae/196afe615e2a98f28a20b424951c2b6b866751016e1087a1d703613c5efb/forayer-0.4.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-28 12:29:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "dobraczka",
    "github_project": "forayer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "forayer"
}
        
Elapsed time: 0.05730s