<p align="center">
<img src="https://github.com/dobraczka/forayer/raw/main/docs/forayerlogo.png" alt="forayer logo", width=200/>
</p>
<h2 align="center"> forayer</h2>
<p align="center">
<a href="https://github.com/dobraczka/forayer/actions/workflows/main.yml"><img alt="Tests" src="https://github.com/dobraczka/forayer/actions/workflows/tests.yml/badge.svg?branch=main"></a>
<a href="https://github.com/dobraczka/forayer/actions/workflows/quality.yml"><img alt="Linting" src="https://github.com/dobraczka/forayer/actions/workflows/quality.yml/badge.svg?branch=main"></a>
<a><img alt="Test coverage" src="https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/dobraczka/6d07d95e43929bcbf9d031c2c8f2015f/raw/forayer_test_gist.json"></a>
<a href="https://pypi.org/project/forayer"/><img alt="Stable python versions" src="https://img.shields.io/pypi/pyversions/forayer"></a>
<a href="https://github.com/dobraczka/forayer/blob/main/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue"></a>
<a href="https://github.com/psf/black"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
</p>
About
=====
Forayer is a library of **f**irst aid utilities for kn**o**wledge g**r**aph explor**a**tion with an entit**y** c**e**ntric app**r**oach.
It is intended to make data integration of knowledge graphs easier. With entities as first class citizens forayer is a toolset to aid in knowledge graph exploration for data integration and specifically entity resolution.
You can easily load pre-existing entity resolution tasks:
```python
>>> from forayer.datasets import OpenEADataset
>>> ds = OpenEADataset(ds_pair="D_W",size="15K",version=1)
>>> ds.er_task
ERTask({DBpedia: (# entities: 15000, # entities_with_rel: 15000, # rel: 13359,
# entities_with_attributes: 13782, # attributes: 13782, # attr_values: 24995),
Wikidata: (# entities: 15000, # entities_with_rel: 15000, # rel: 13554,
# entities_with_attributes: 14376, # attributes: 14376, # attr_values: 114107)},
ClusterHelper(# elements:30000, # clusters:15000))
```
This entity resolution task holds 2 knowledge graphs and a cluster of known matches. You can search in knowledge graphs:
```python
>>> ds.er_task["DBpedia"].search("Dorothea")
KG(entities={'http://dbpedia.org/resource/E801200':
{'http://dbpedia.org/ontology/activeYearsStartYear': '"1948"^^<http://www.w3.org/2001/XMLSchema#gYear>',
'http://dbpedia.org/ontology/activeYearsEndYear': '"2008"^^<http://www.w3.org/2001/XMLSchema#gYear>',
'http://dbpedia.org/ontology/birthName': 'Dorothea Carothers Allen',
'http://dbpedia.org/ontology/alias': 'Allen, Dorothea Carothers',
'http://dbpedia.org/ontology/birthYear': '"1923"^^<http://www.w3.org/2001/XMLSchema#gYear>',
'http://purl.org/dc/elements/1.1/description': 'Film editor',
'http://dbpedia.org/ontology/birthDate': '"1923-12-03"^^<http://www.w3.org/2001/XMLSchema#date>',
'http://dbpedia.org/ontology/deathDate': '"2010-04-17"^^<http://www.w3.org/2001/XMLSchema#date>',
'http://dbpedia.org/ontology/deathYear': '"2010"^^<http://www.w3.org/2001/XMLSchema#gYear>'}}, rel={}, name=DBpedia)
```
Decide to work with a smaller snippet of the resolution task:
```python
>>> ert_sample = ds.er_task.sample(100)
>>> ert_sample
ERTask({DBpedia: (# entities: 100, # entities_with_rel: 6, # rel: 4,
# entities_with_attributes: 99, # attributes: 99, # attr_values: 274),
Wikidata: (# entities: 100, # entities_with_rel: 4, # rel: 4,
# entities_with_attributes: 100, # attributes: 100, # attr_values: 797)},
ClusterHelper(# elements:200, # clusters:100))
```
And much more can be found in the [user guide](https://forayer.readthedocs.io/en/latest/source/user_guide.html).
Installation
============
You can install forayer via pip:
```bash
pip install forayer
```
Raw data
{
"_id": null,
"home_page": "https://github.com/dobraczka/forayer",
"name": "forayer",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8,<4.0",
"maintainer_email": "",
"keywords": "knowledge graph,entity resolution",
"author": "Daniel Obraczka",
"author_email": "obraczka@informatik.uni-leipzig.de",
"download_url": "https://files.pythonhosted.org/packages/db/ae/196afe615e2a98f28a20b424951c2b6b866751016e1087a1d703613c5efb/forayer-0.4.4.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n<img src=\"https://github.com/dobraczka/forayer/raw/main/docs/forayerlogo.png\" alt=\"forayer logo\", width=200/>\n</p>\n\n<h2 align=\"center\"> forayer</h2>\n\n<p align=\"center\">\n<a href=\"https://github.com/dobraczka/forayer/actions/workflows/main.yml\"><img alt=\"Tests\" src=\"https://github.com/dobraczka/forayer/actions/workflows/tests.yml/badge.svg?branch=main\"></a>\n<a href=\"https://github.com/dobraczka/forayer/actions/workflows/quality.yml\"><img alt=\"Linting\" src=\"https://github.com/dobraczka/forayer/actions/workflows/quality.yml/badge.svg?branch=main\"></a>\n<a><img alt=\"Test coverage\" src=\"https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/dobraczka/6d07d95e43929bcbf9d031c2c8f2015f/raw/forayer_test_gist.json\"></a>\n<a href=\"https://pypi.org/project/forayer\"/><img alt=\"Stable python versions\" src=\"https://img.shields.io/pypi/pyversions/forayer\"></a>\n<a href=\"https://github.com/dobraczka/forayer/blob/main/LICENSE\"><img alt=\"MIT License\" src=\"https://img.shields.io/badge/license-MIT-blue\"></a>\n<a href=\"https://github.com/psf/black\"><img alt=\"Code style: black\" src=\"https://img.shields.io/badge/code%20style-black-000000.svg\"></a>\n</p>\n\nAbout\n=====\nForayer is a library of **f**irst aid utilities for kn**o**wledge g**r**aph explor**a**tion with an entit**y** c**e**ntric app**r**oach.\nIt is intended to make data integration of knowledge graphs easier. With entities as first class citizens forayer is a toolset to aid in knowledge graph exploration for data integration and specifically entity resolution.\n\nYou can easily load pre-existing entity resolution tasks:\n\n```python\n >>> from forayer.datasets import OpenEADataset\n >>> ds = OpenEADataset(ds_pair=\"D_W\",size=\"15K\",version=1)\n >>> ds.er_task\n ERTask({DBpedia: (# entities: 15000, # entities_with_rel: 15000, # rel: 13359,\n # entities_with_attributes: 13782, # attributes: 13782, # attr_values: 24995),\n Wikidata: (# entities: 15000, # entities_with_rel: 15000, # rel: 13554,\n # entities_with_attributes: 14376, # attributes: 14376, # attr_values: 114107)},\n ClusterHelper(# elements:30000, # clusters:15000))\n```\n\nThis entity resolution task holds 2 knowledge graphs and a cluster of known matches. You can search in knowledge graphs:\n\n```python\n >>> ds.er_task[\"DBpedia\"].search(\"Dorothea\")\n KG(entities={'http://dbpedia.org/resource/E801200': \n {'http://dbpedia.org/ontology/activeYearsStartYear': '\"1948\"^^<http://www.w3.org/2001/XMLSchema#gYear>',\n 'http://dbpedia.org/ontology/activeYearsEndYear': '\"2008\"^^<http://www.w3.org/2001/XMLSchema#gYear>',\n 'http://dbpedia.org/ontology/birthName': 'Dorothea Carothers Allen',\n 'http://dbpedia.org/ontology/alias': 'Allen, Dorothea Carothers',\n 'http://dbpedia.org/ontology/birthYear': '\"1923\"^^<http://www.w3.org/2001/XMLSchema#gYear>',\n 'http://purl.org/dc/elements/1.1/description': 'Film editor',\n 'http://dbpedia.org/ontology/birthDate': '\"1923-12-03\"^^<http://www.w3.org/2001/XMLSchema#date>',\n 'http://dbpedia.org/ontology/deathDate': '\"2010-04-17\"^^<http://www.w3.org/2001/XMLSchema#date>', \n 'http://dbpedia.org/ontology/deathYear': '\"2010\"^^<http://www.w3.org/2001/XMLSchema#gYear>'}}, rel={}, name=DBpedia)\n```\n\nDecide to work with a smaller snippet of the resolution task:\n\n```python\n >>> ert_sample = ds.er_task.sample(100)\n >>> ert_sample\n ERTask({DBpedia: (# entities: 100, # entities_with_rel: 6, # rel: 4,\n # entities_with_attributes: 99, # attributes: 99, # attr_values: 274),\n Wikidata: (# entities: 100, # entities_with_rel: 4, # rel: 4,\n # entities_with_attributes: 100, # attributes: 100, # attr_values: 797)},\n ClusterHelper(# elements:200, # clusters:100))\n```\n\nAnd much more can be found in the [user guide](https://forayer.readthedocs.io/en/latest/source/user_guide.html).\n\nInstallation\n============\n\nYou can install forayer via pip:\n\n```bash\n pip install forayer\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "First aid utilies for knowledge graph exploration with an entity centric approach",
"version": "0.4.4",
"split_keywords": [
"knowledge graph",
"entity resolution"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6757a4b802464a5863c925a028c1bfb42c3c961926ab8fd524182aab7310b1d2",
"md5": "3f159d3bea9b3521859a75fc859217e4",
"sha256": "947368aba600d3875747ac33611dd2b1445c71ed60bfc1af5681ad213b367ce3"
},
"downloads": -1,
"filename": "forayer-0.4.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3f159d3bea9b3521859a75fc859217e4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8,<4.0",
"size": 37270,
"upload_time": "2023-03-28T12:29:38",
"upload_time_iso_8601": "2023-03-28T12:29:38.246046Z",
"url": "https://files.pythonhosted.org/packages/67/57/a4b802464a5863c925a028c1bfb42c3c961926ab8fd524182aab7310b1d2/forayer-0.4.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dbae196afe615e2a98f28a20b424951c2b6b866751016e1087a1d703613c5efb",
"md5": "0edbfa810616a6fc48406b8c4d57a1a2",
"sha256": "b4ae8202d10fbf8b55a7ed0cedcf10984f6cd8ac3dbe34c4eb071ef363f0fd0f"
},
"downloads": -1,
"filename": "forayer-0.4.4.tar.gz",
"has_sig": false,
"md5_digest": "0edbfa810616a6fc48406b8c4d57a1a2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<4.0",
"size": 32198,
"upload_time": "2023-03-28T12:29:39",
"upload_time_iso_8601": "2023-03-28T12:29:39.759968Z",
"url": "https://files.pythonhosted.org/packages/db/ae/196afe615e2a98f28a20b424951c2b6b866751016e1087a1d703613c5efb/forayer-0.4.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-28 12:29:39",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "dobraczka",
"github_project": "forayer",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "forayer"
}