forestplot


Nameforestplot JSON
Version 0.4.1 PyPI version JSON
download
home_pagehttps://github.com/lsys/forestplot
SummaryA Python package to make publication-ready but customizable forest plots.
upload_time2024-07-28 07:25:38
maintainerLucas Shen
docs_urlNone
authorLucas Shen
requires_pythonNone
licenseMIT
keywords visualization python data-science dataviz pandas matplotlib mpl forestplot blobbogram
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            <div id="top"></div> 
<h1 align="center" >
  Forestplot
</h1>
<p align="center">
  <a href="https://pypi.org/project/forestplot">
  <img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/forestplot?label=Python&logo=python&logoColor=white">
  </a><br>
  <b>Easy API for forest plots.</b><br>
  A Python package to make publication-ready but customizable forest plots.
</p>

<p align="center"><img width="100%" src="https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/main.png"></p>

-----------------------------------------------------------
This package makes publication-ready forest plots easy to make out-of-the-box. Users provide a `dataframe` (e.g. from a spreadsheet) where rows correspond to a variable/study with columns including estimates, variable labels, and lower and upper confidence interval limits.
Additional options allow easy addition of columns in the `dataframe` as annotations in the plot.

<!---------------------- Project shields ---------------------->

|    |    |
| --- | --- |
| Release | [![PyPI](https://img.shields.io/pypi/v/forestplot?color=blue&label=PyPI&logo=pypi&logoColor=white)](https://pypi.org/project/forestplot/) [![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/forestplot?logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/forestplot) [![GitHub release (latest by date)](https://img.shields.io/github/v/release/lsys/forestplot?color=blue&label=Latest%20release)](https://github.com/LSYS/forestplot/releases) |
| Status | [![CI](https://github.com/LSYS/forestplot/actions/workflows/CI.yml/badge.svg)](https://github.com/LSYS/forestplot/actions/workflows/CI.yml) [![Notebooks](https://github.com/LSYS/forestplot/actions/workflows/nb.yml/badge.svg)](https://github.com/LSYS/forestplot/actions/workflows/nb.yml) |
| Coverage |  [![Codecov](https://img.shields.io/codecov/c/github/lsys/forestplot?logo=codecov&logoColor=white&label=codecov)](https://app.codecov.io/gh/LSYS/forestplot) |
| Python | [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/forestplot?label=Python%203.6%2B&logo=python&logoColor=white)](https://pypi.org/project/forestplot/) |
| Docs | [![Read the Docs (version)](https://img.shields.io/readthedocs/forestplot/stable?label=docs&logo=readthedocs&logoColor=white)](https://forestplot.readthedocs.io/en/latest/?badge=latest) [![DocLinks](https://github.com/LSYS/forestplot/actions/workflows/links.yml/badge.svg)](https://github.com/LSYS/forestplot/actions/workflows/links.yml)|
| Meta | [![GitHub](https://img.shields.io/github/license/lsys/forestplot?color=purple&label=License)](https://choosealicense.com/licenses/mit/) [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![types - Mypy](https://img.shields.io/badge/types-Mypy-blue.svg)](https://github.com/python/mypy) [![DOI](https://zenodo.org/badge/510013191.svg)](https://zenodo.org/badge/latestdoi/510013191) |
| Binder| [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/lsys/forestplot/main?labpath=examples%2Freadme-examples.ipynb) |

<!---------------------- TABLE OF CONTENT ---------------------->
# Table of Contents[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#table-of-contents)
<details open><summary><b>show/hide</b></summary><p>

> - [Installation](#installation)
> - [Quick Start](#quick-start)
> - [Some Examples with Customizations](#some-examples-with-customizations)
> - [Gallery and API Options](#gallery-and-api-options)
> - [Multi-models](#multi-models)
> - [Known Issues](#known-issues)
> - [Background and Additional Resources](#background-and-additional-resources)
> - [Contributing](#contributing)
</p></details><p></p>

<!------------------------- INSTALLATION ------------------------->
## Installation[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#installation)

Install from PyPI<br>
 [![PyPI](https://img.shields.io/pypi/v/forestplot?color=blue&label=PyPI&logo=pypi&logoColor=white)](https://pypi.org/project/forestplot/)
```bash
pip install forestplot
```

Install from conda-forge<br>
[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/forestplot?logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/forestplot)
```bash
conda install forestplot
```

Install from source<br>
[![GitHub release (latest by date)](https://img.shields.io/github/v/release/lsys/forestplot?color=blue&label=Latest%20release)](https://github.com/LSYS/forestplot/releases)<br>
```bash
git clone https://github.com/LSYS/forestplot.git
cd forestplot
pip install .
```

Developer installation<br>
```bash
git clone https://github.com/LSYS/forestplot.git
cd forestplot
pip install -r requirements_dev.txt

make lint
make test
```

<p align="right">(<a href="#top">back to top</a>)</p>


<!------------------------- QUICK START ------------------------->
## Quick Start[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#quick-start)

```python
import forestplot as fp

df = fp.load_data("sleep")  # companion example data
df.head(3)
```
|    | var      |          r |   moerror | label                     | group         |    ll |    hl |   n |    power |     p-val |
|---:|:---------|-----------:|----------:|:--------------------------|:--------------|------:|------:|----:|---------:|----------:|
|  0 | age      |  0.0903729 | 0.0696271 | in years                  | age           |  0.02 |  0.16 | 706 | 0.671578 | 0.0163089 |
|  1 | black    | -0.0270573 | 0.0770573 | =1 if black               | other factors | -0.1  |  0.05 | 706 | 0.110805 | 0.472889  |
|  2 | clerical |  0.0480811 | 0.0719189 | =1 if clerical worker     | occupation    | -0.03 |  0.12 | 706 | 0.247768 | 0.201948  |

(* This is a toy example of how certain factors correlate with the amount of sleep one gets. See the [notebook that generates the data](https://nbviewer.org/github/LSYS/forestplot/blob/main/examples/get-sleep.ipynb).)

<details><summary><i>The example input dataframe above have 4 key columns</i></summary>

  | Column    | Description                                     | Required  |
  |:----------|:------------------------------------------------|:----------|
  | `var`     | Variable label                                  | &check;   |
  | `r`       | Correlation coefficients (estimates to plot)    | &check;   |
  | `label`   | Variable labels                                 | &check;   |
  | `group`   | Variable grouping labels                        |           |
  | `ll`      | Conf. int. *lower limits*                       |           |
  | `hl`      | Containing the conf. int. *higher limits*       |           |
  | `n`       | Sample size                                     |           |
  | `power`   | Statistical power                               |           |
  | `p-val`   | P-value                                         |           |

  (See [Gallery and API Options](#gallery-and-api-options) for more details on required and optional arguments.)  
</details>

Make the forest plot
```python
fp.forestplot(df,  # the dataframe with results data
              estimate="r",  # col containing estimated effect size 
              ll="ll", hl="hl",  # columns containing conf. int. lower and higher limits
              varlabel="label",  # column containing variable label
              ylabel="Confidence interval",  # y-label title
              xlabel="Pearson correlation",  # x-label title
              )
```
<p align="left"><img width="75%" src="https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/vanilla.png"></p>

Save the plot
```python
plt.savefig("plot.png", bbox_inches="tight")
```
<p align="right">(<a href="#top">back to top</a>)</p>

<!------------------ EXAMPLES of CUSTOMIZATIONS ------------------>
## Some Examples With Customizations[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#some-examples-with-customizations)

1. Add variable groupings, add group order, and sort by estimate size.
```python
fp.forestplot(df,  # the dataframe with results data
              estimate="r",  # col containing estimated effect size 
              ll="ll", hl="hl",  # columns containing conf. int. lower and higher limits              
              varlabel="label",  # column containing variable label
              capitalize="capitalize",  # Capitalize labels
              groupvar="group",  # Add variable groupings 
              # group ordering
              group_order=["labor factors", "occupation", "age", "health factors", 
                           "family factors", "area of residence", "other factors"],
              sort=True  # sort in ascending order (sorts within group if group is specified)               
              )
```
<p align="left"><img width="75%" src="https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/group-grouporder-sort.png"></p>

2. Add p-values on the right and color alternate rows gray
```python
fp.forestplot(df,  # the dataframe with results data
              estimate="r",  # col containing estimated effect size 
              ll="ll", hl="hl",  # columns containing conf. int. lower and higher limits
              varlabel="label",  # column containing variable label
              capitalize="capitalize",  # Capitalize labels
              groupvar="group",  # Add variable groupings 
              # group ordering
              group_order=["labor factors", "occupation", "age", "health factors", 
                           "family factors", "area of residence", "other factors"],
              sort=True,  # sort in ascending order (sorts within group if group is specified)               
              pval="p-val",  # Column of p-value to be reported on right
              color_alt_rows=True,  # Gray alternate rows
              ylabel="Est.(95% Conf. Int.)",  # ylabel to print
              **{"ylabel1_size": 11}  # control size of printed ylabel
              )
```

<p align="left"><img width="80%" src="https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/group-grouporder-pvalue-sort-colorrows.png"></p>


3. Customize annotations and make it a table
```python
fp.forestplot(df,  # the dataframe with results data
              estimate="r",  # col containing estimated effect size 
              ll="ll", hl="hl",  # lower & higher limits of conf. int.
              varlabel="label",  # column containing the varlabels to be printed on far left
              capitalize="capitalize",  # Capitalize labels
              pval="p-val",  # column containing p-values to be formatted
              annote=["n", "power", "est_ci"],  # columns to report on left of plot
              annoteheaders=["N", "Power", "Est. (95% Conf. Int.)"],  # ^corresponding headers
              rightannote=["formatted_pval", "group"],  # columns to report on right of plot 
              right_annoteheaders=["P-value", "Variable group"],  # ^corresponding headers
              xlabel="Pearson correlation coefficient",  # x-label title
              table=True,  # Format as a table
              )
```

<p align="left"><img width="85%" src="https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/leftannote-rightannote-table.png"></p>

4. Strip down all bells and whistle
```python
fp.forestplot(df,  # the dataframe with results data
              estimate="r",  # col containing estimated effect size 
              ll="ll", hl="hl",  # lower & higher limits of conf. int.
              varlabel="label",  # column containing the varlabels to be printed on far left
              capitalize="capitalize",  # Capitalize labels
              ci_report=False,  # Turn off conf. int. reporting
              flush=False,  # Turn off left-flush of text
              **{'fontfamily': 'sans-serif'}  # revert to sans-serif                              
              )
```               
<p align="left"><img width="50%" src="https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/vcoefplot.png"></p>

5. Example with more customizations
```python
fp.forestplot(df,  # the dataframe with results data
              estimate="r",  # col containing estimated effect size 
              ll="ll", hl="hl",  # lower & higher limits of conf. int.
              varlabel="label",  # column containing the varlabels to be printed on far left
              capitalize="capitalize",  # Capitalize labels
              pval="p-val",  # column containing p-values to be formatted
              annote=["n", "power", "est_ci"],  # columns to report on left of plot
              annoteheaders=["N", "Power", "Est. (95% Conf. Int.)"],  # ^corresponding headers
              rightannote=["formatted_pval", "group"],  # columns to report on right of plot 
              right_annoteheaders=["P-value", "Variable group"],  # ^corresponding headers
              groupvar="group",  # column containing group labels
              group_order=["labor factors", "occupation", "age", "health factors", 
                           "family factors", "area of residence", "other factors"],                   
              xlabel="Pearson correlation coefficient",  # x-label title
              xticks=[-.4,-.2,0, .2],  # x-ticks to be printed
              sort=True,  # sort estimates in ascending order
              table=True,  # Format as a table
              # Additional kwargs for customizations
              **{"marker": "D",  # set maker symbol as diamond
                 "markersize": 35,  # adjust marker size
                 "xlinestyle": (0, (10, 5)),  # long dash for x-reference line 
                 "xlinecolor": "#808080",  # gray color for x-reference line
                 "xtick_size": 12,  # adjust x-ticker fontsize
                }  
              )
```
<p align="left"><img width="100%" src="https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/main.png"></p>

<details><summary><i>Annotations arguments allowed include:</i></summary>
  
  * `ci_range`: Confidence interval range (e.g. `(-0.39 to -0.25)`).
  * `est_ci`: Estimate and CI (e.g. `-0.32(-0.39 to -0.25)`).
  * `formatted_pval`: Formatted p-values (e.g. `0.01**`).
  
  To confirm what processed `columns` are available as annotations, you can do:
  
  ```python
  processed_df, ax = fp.forestplot(df, 
                                   ...  # other arguments here
                                   return_df=True  # return processed dataframe with processed columns
                                  )
  processed_df.head(3)
  ```
  
  |    | label                | group         |   n |          r | CI95%         |       p-val |      BF10 |   power | var    |    hl |    ll |   moerror |   formatted_r |   formatted_ll |   formatted_hl | ci_range         | est_ci                | formatted_pval   |   formatted_n |   formatted_power | formatted_est_ci      | yticklabel                                                        | formatted_formatted_pval   | formatted_group   | yticklabel2            |
|---:|:---------------------|:--------------|----:|-----------:|:--------------|------------:|----------:|--------:|:-------|------:|------:|----------:|--------------:|---------------:|---------------:|:-----------------|:----------------------|:-----------------|--------------:|------------------:|:----------------------|:------------------------------------------------------------------|:---------------------------|:------------------|:-----------------------|
|  0 | Mins worked per week | Labor factors | 706 | -0.321384  | [-0.39 -0.25] | 1.99409e-18 | 1.961e+15 |    1    | totwrk | -0.25 | -0.39 | 0.0686165 |         -0.32 |          -0.39 |          -0.25 | (-0.39 to -0.25) | -0.32(-0.39 to -0.25) | 0.0***           |           706 |              1    | -0.32(-0.39 to -0.25) | Mins worked per week            706  1.0    -0.32(-0.39 to -0.25) | 0.0***                     | Labor factors     | 0.0***   Labor factors |
|  1 | Years of schooling   | Labor factors | 706 | -0.0950039 | [-0.17 -0.02] | 0.0115515   | 1.137     |    0.72 | educ   | -0.02 | -0.17 | 0.0749961 |         -0.1  |          -0.17 |          -0.02 | (-0.17 to -0.02) | -0.10(-0.17 to -0.02) | 0.01**           |           706 |              0.72 | -0.10(-0.17 to -0.02) | Years of schooling              706  0.72   -0.10(-0.17 to -0.02) | 0.01**                     | Labor factors     | 0.01**   Labor factors |
  
</details>
<p align="right">(<a href="#top">back to top</a>)</p>

<!------------------- Multi-models ------------------->
## Multi-models[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#multi-models)

For coefficient plots where each variable can have multiple estimates (each `model` has one).

```python
import forestplot as fp

df_mmodel = pd.read_csv("../examples/data/sleep-mmodel.csv").query(
    "model=='all' | model=='young kids'"
)
df_mmodel.head(3)
```

|    | var   |       coef |       se |         T |     pval |       r2 |     adj_r2 |         ll |      hl | model      | group         | label       |
|---:|:------|-----------:|---------:|----------:|---------:|---------:|-----------:|-----------:|--------:|:-----------|:--------------|:------------|
|  0 | age   |   0.994889 |  1.96925 |  0.505213 | 0.613625 | 0.127289 |  0.103656  |   -2.87382 |  4.8636 | all        | age           | in years    |
|  3 | age   |  22.634    | 15.4953  |  1.4607   | 0.149315 | 0.178147 | -0.0136188 |   -8.36124 | 53.6293 | young kids | age           | in years    |
|  4 | black | -84.7966   | 82.1501  | -1.03222  | 0.302454 | 0.127289 |  0.103656  | -246.186   | 76.5925 | all        | other factors | =1 if black |

```python
fp.mforestplot(
    dataframe=df_mmodel,
    estimate="coef",
    ll="ll",
    hl="hl",
    varlabel="label",
    capitalize="capitalize",
    model_col="model",
    color_alt_rows=True,
    groupvar="group",
    table=True,
    rightannote=["var", "group"],
    right_annoteheaders=["Source", "Group"],
    xlabel="Coefficient (95% CI)",
    modellabels=["Have young kids", "Full sample"],
    xticks=[-1200, -600, 0, 600],
    mcolor=["#CC6677", "#4477AA"],
    # Additional kwargs for customizations
    **{
        "markersize": 30,
        # override default vertical offset between models (0.0 to 1.0)
        "offset": 0.35,  
        "xlinestyle": (0, (10, 5)),  # long dash for x-reference line
        "xlinecolor": ".8",  # gray color for x-reference line
    },
)
```
<p align="left"><img width="100%" src="https://raw.githubusercontent.com/LSYS/forestplot/mplot-dev/docs/images/multimodel.png"></p>

Please note: This module is still experimental. See [this jupyter notebook](https://nbviewer.org/github/LSYS/forestplot/blob/mplot-dev/examples/test-multmodel-sleep.ipynb) for more examples and tweaks.

<!------------------- GALLERY AND API OPTIONS ------------------->
## Gallery and API Options[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#gallery-and-api-options)

[![Notebooks](https://github.com/LSYS/forestplot/actions/workflows/nb.yml/badge.svg)](https://github.com/LSYS/forestplot/actions/workflows/nb.yml)

Check out [this jupyter notebook](https://nbviewer.org/github/LSYS/forestplot/blob/main/examples/readme-examples.ipynb) for a gallery variations of forest plots possible out-of-the-box.
The table below shows the list of arguments users can pass in.
More fined-grained control for base plot options (eg font sizes, marker colors) can be inferred from the [example notebook gallery](https://nbviewer.org/github/LSYS/forestplot/blob/main/examples/readme-examples.ipynb). 


| Option      | Description                                                                                                                                                 | Required   |
|:-------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:---|
| `dataframe`           | Pandas dataframe where rows are variables (or studies for meta-analyses) and columns include estimated effect sizes, labels, and confidence intervals, etc. | &check; |
| `estimate`            | Name of column in `dataframe` containing the *estimates*.                                                                                                   | &check; |
| `varlabel`            | Name of column in `dataframe` containing the *variable labels* (study labels if meta-analyses).                                                             | &check; |
| `ll`                  | Name of column in `dataframe` containing the conf. int. *lower limits*.                                                                                     |  |
| `hl`                  | Name of column in `dataframe` containing the conf. int. *higher limits*.                                                                                    |  |
| `logscale`            | If True, make the x-axis log scale. Default is False.                                                                                                     |  |
| `capitalize`          | How to capitalize strings. Default is None. One of "capitalize", "title", "lower", "upper", "swapcase".                                                      | |
| `form_ci_report`      | If True (default), report the estimates and confidence interval beside the variable labels.                                                                 |          |
| `ci_report`           | If True (default), format the confidence interval as a string.                                                                                              |          |
| `groupvar`            | Name of column in `dataframe` containing the variable *grouping labels*.                                                                                    |       |
| `group_order`         | List of group labels indicating the order of groups to report in the plot.                                                                                  |       |
| `annote`              | List of columns to add as annotations on the left-hand side of the plot.                                                                                    |       |
| `annoteheaders`       | List of column headers for the left-hand side annotations.                                                                                                  |       |
| `rightannote`         | List of columns to add as annotations on the right-hand side of the plot.                                                                                   |       |
| `right_annoteheaders` | List of column headers for the right-hand side annotations.                                                                                                 |       |
| `pval`                | Name of column in `dataframe` containing the p-values.                                                                                                      |       |
| `starpval`            | If True (default), format p-values with stars indicating statistical significance.                                                                          |          |
| `sort`                | If True, sort variables by `estimate` values in ascending order.                                                                                            |          |
| `sortby`              | Name of column to sort by. Default is `estimate`.                                                                                                           |       |
| `flush`               | If True (default), left-flush variable labels and annotations.                                                                                              |          |
| `decimal_precision`   | Number of decimal places to print. (Default = 2)                                                                                                            |          |
| `figsize`             | Tuple indicating core figure size. Default is (4, 8)                                                                                                        |          |
| `xticks`              | List of xticklabels to print on x-axis.                                                                                                                     |       |
| `ylabel`              | Y-label title.                                                                                                                                              |      |
| `xlabel`              | X-label title.                                                                                                                                              |       |
| `color_alt_rows`      | If True, shade out alternating rows in gray.                                                                                                                |          |
| `preprocess`          | If True (default), preprocess the `dataframe` before plotting.                                                                                              |          |
| `return_df`           | If True, returned the preprocessed `dataframe`.                                                                                                             |          |

<p align="right">(<a href="#top">back to top</a>)</p>

<!------------------------ KNOWN ISSUES ------------------------>
## Known Issues[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#known-issues)

* Variable labels coinciding with group variables may lead to unexpected formatting issues in the graph.
* Left-flushing of annotations relies on the `monospace` font.
* Plot may give strange behavior for few rows of data (six rows or fewer. [see this issue](https://github.com/LSYS/forestplot/issues/52))
* Plot can get cluttered with too many variables/rows (~30 onwards) 
* Not tested with PyCharm (#80) nor Google Colab (#110).
* Duplicated `varlabel` may lead to unexpected results (see #76, #81). `mplot` for grouped models could be useful for such cases (see #59, WIP).
<p align="right">(<a href="#top">back to top</a>)</p>

<!----------------- BACKGROUND AND ADDITIONAL RESOURCES ----------------->
## Background and Additional Resources[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#background-and-additional-resources)

**More about forest plots**

[Forest plots](https://en.wikipedia.org/wiki/Forest_plot) have many aliases (h/t Chris Alexiuk). Other names include coefplots, coefficient plots, meta-analysis plots, dot-and-whisker plots, blobbograms, margins plots, regression plots, and ropeladder plots. 

[Forest plots](https://en.wikipedia.org/wiki/Forest_plot) in the medical and health sciences literature are plots that report results from different studies as a meta-analysis. Markers are centered on the estimated effect and horizontal lines running through each marker depicts the confidence intervals.

The simplest version of a forest plot has two columns: one for the variables/studies, and the second for the estimated coefficients and confidence intervals.
This layout is similar to coefficient plots ([coefplots](http://repec.sowi.unibe.ch/stata/coefplot/getting-started.html)) and is thus useful for more than meta-analyses.

<details><summary><i>More resources about forest plots</i></summary><p>

* [[1]](https://doi.org/10.1038/s41433-021-01867-6) Chang, Y., Phillips, M.R., Guymer, R.H. et al. The 5 min meta-analysis: understanding how to read and interpret a forest plot. Eye 36, 673–675 (2022).
* [[2]](https://doi.org/10.1136/bmj.322.7300.1479) Lewis S, Clarke M. Forest plots: trying to see the wood and the trees BMJ 2001; 322 :1479 
</p></details><p></p>

**More about this package**

The package is lightweight, built on `pandas`, `numpy`, and `matplotlib`.

It is slightly opinioniated in that the aesthetics of the plot inherits some of my sensibilities about what makes a nice figure.
You can however easily override most defaults for the look of the graph. This is possible via `**kwargs` in the `forestplot` API (see [Gallery and API options](#gallery-and-api-options)) and the `matplotlib` API.

**Planned enhancements** include forest plots where each row can have multiple coefficients (e.g. from multiple models). 

<details><summary><i>Related packages</i></summary><p>

* [[1]](https://www.stata-journal.com/article.html?article=gr0059) [Stata] Jann, Ben (2014). Plotting regression coefficients and other estimates. The Stata Journal 14(4): 708-737. 
* [[2]](https://www.statsmodels.org/devel/examples/notebooks/generated/metaanalysis1.html) [Python] Meta-Analysis in statsmodels
* [[3]](https://github.com/seafloor/forestplot) [Python] Matt Bracher-Smith's Forestplot
* [[4]](https://github.com/fsolt/dotwhisker) [R] Solt, Frederick and Hu, Yue (2021) dotwhisker: Dot-and-Whisker Plots of Regression Results
* [[5]](https://rpubs.com/mbounthavong/forest_plots_r) [R] Bounthavong, Mark (2021) Forest plots. RPubs by RStudio
</p></details><p></p>

<p align="right">(<a href="#top">back to top</a>)</p>


<!----------------------- CONTRIBUTING ----------------------->
## Contributing[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#contributing)

Contributions are welcome, and they are greatly appreciated!

**Potential ways to contribute:**

* Raise issues/bugs/questions
* Write tests for missing coverage
* Add features (see [examples notebook](https://nbviewer.org/github/LSYS/forestplot/blob/main/examples/readme-examples.ipynb) for a survey of  existing features)
* Add example datasets with companion graphs
* Add your graphs with companion code

**Issues**

Please submit bugs, questions, or issues you encounter to the [GitHub Issue Tracker](https://github.com/lsys/forestplot/issues).
For bugs, please provide a minimal reproducible example demonstrating the problem (it may help me troubleshoot if I have a version of your data).

**Pull Requests**

Please feel free to open an issue on the [Issue Tracker](https://github.com/lsys/forestplot/issues) if you'd like to discuss potential contributions via PRs.

<p align="right">(<a href="#top">back to top</a>)</p>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lsys/forestplot",
    "name": "forestplot",
    "maintainer": "Lucas Shen",
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": "lucas@lucasshen.com",
    "keywords": "visualization, python, data-science, dataviz, pandas, matplotlib, mpl, forestplot, blobbogram",
    "author": "Lucas Shen",
    "author_email": "lucas@lucasshen.com",
    "download_url": "https://files.pythonhosted.org/packages/a9/ac/b33e2050f0c69df601e9f323a0dbe49f6a49be9dc79c513536d80c5c5fcd/forestplot-0.4.1.tar.gz",
    "platform": null,
    "description": "<div id=\"top\"></div> \n<h1 align=\"center\" >\n  Forestplot\n</h1>\n<p align=\"center\">\n  <a href=\"https://pypi.org/project/forestplot\">\n  <img alt=\"PyPI - Python Version\" src=\"https://img.shields.io/pypi/pyversions/forestplot?label=Python&logo=python&logoColor=white\">\n  </a><br>\n  <b>Easy API for forest plots.</b><br>\n  A Python package to make publication-ready but customizable forest plots.\n</p>\n\n<p align=\"center\"><img width=\"100%\" src=\"https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/main.png\"></p>\n\n-----------------------------------------------------------\nThis package makes publication-ready forest plots easy to make out-of-the-box. Users provide a `dataframe` (e.g. from a spreadsheet) where rows correspond to a variable/study with columns including estimates, variable labels, and lower and upper confidence interval limits.\nAdditional options allow easy addition of columns in the `dataframe` as annotations in the plot.\n\n<!---------------------- Project shields ---------------------->\n\n|    |    |\n| --- | --- |\n| Release | [![PyPI](https://img.shields.io/pypi/v/forestplot?color=blue&label=PyPI&logo=pypi&logoColor=white)](https://pypi.org/project/forestplot/) [![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/forestplot?logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/forestplot) [![GitHub release (latest by date)](https://img.shields.io/github/v/release/lsys/forestplot?color=blue&label=Latest%20release)](https://github.com/LSYS/forestplot/releases) |\n| Status | [![CI](https://github.com/LSYS/forestplot/actions/workflows/CI.yml/badge.svg)](https://github.com/LSYS/forestplot/actions/workflows/CI.yml) [![Notebooks](https://github.com/LSYS/forestplot/actions/workflows/nb.yml/badge.svg)](https://github.com/LSYS/forestplot/actions/workflows/nb.yml) |\n| Coverage |  [![Codecov](https://img.shields.io/codecov/c/github/lsys/forestplot?logo=codecov&logoColor=white&label=codecov)](https://app.codecov.io/gh/LSYS/forestplot) |\n| Python | [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/forestplot?label=Python%203.6%2B&logo=python&logoColor=white)](https://pypi.org/project/forestplot/) |\n| Docs | [![Read the Docs (version)](https://img.shields.io/readthedocs/forestplot/stable?label=docs&logo=readthedocs&logoColor=white)](https://forestplot.readthedocs.io/en/latest/?badge=latest) [![DocLinks](https://github.com/LSYS/forestplot/actions/workflows/links.yml/badge.svg)](https://github.com/LSYS/forestplot/actions/workflows/links.yml)|\n| Meta | [![GitHub](https://img.shields.io/github/license/lsys/forestplot?color=purple&label=License)](https://choosealicense.com/licenses/mit/) [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![types - Mypy](https://img.shields.io/badge/types-Mypy-blue.svg)](https://github.com/python/mypy) [![DOI](https://zenodo.org/badge/510013191.svg)](https://zenodo.org/badge/latestdoi/510013191) |\n| Binder| [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/lsys/forestplot/main?labpath=examples%2Freadme-examples.ipynb) |\n\n<!---------------------- TABLE OF CONTENT ---------------------->\n# Table of Contents[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#table-of-contents)\n<details open><summary><b>show/hide</b></summary><p>\n\n> - [Installation](#installation)\n> - [Quick Start](#quick-start)\n> - [Some Examples with Customizations](#some-examples-with-customizations)\n> - [Gallery and API Options](#gallery-and-api-options)\n> - [Multi-models](#multi-models)\n> - [Known Issues](#known-issues)\n> - [Background and Additional Resources](#background-and-additional-resources)\n> - [Contributing](#contributing)\n</p></details><p></p>\n\n<!------------------------- INSTALLATION ------------------------->\n## Installation[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#installation)\n\nInstall from PyPI<br>\n [![PyPI](https://img.shields.io/pypi/v/forestplot?color=blue&label=PyPI&logo=pypi&logoColor=white)](https://pypi.org/project/forestplot/)\n```bash\npip install forestplot\n```\n\nInstall from conda-forge<br>\n[![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/forestplot?logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/forestplot)\n```bash\nconda install forestplot\n```\n\nInstall from source<br>\n[![GitHub release (latest by date)](https://img.shields.io/github/v/release/lsys/forestplot?color=blue&label=Latest%20release)](https://github.com/LSYS/forestplot/releases)<br>\n```bash\ngit clone https://github.com/LSYS/forestplot.git\ncd forestplot\npip install .\n```\n\nDeveloper installation<br>\n```bash\ngit clone https://github.com/LSYS/forestplot.git\ncd forestplot\npip install -r requirements_dev.txt\n\nmake lint\nmake test\n```\n\n<p align=\"right\">(<a href=\"#top\">back to top</a>)</p>\n\n\n<!------------------------- QUICK START ------------------------->\n## Quick Start[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#quick-start)\n\n```python\nimport forestplot as fp\n\ndf = fp.load_data(\"sleep\")  # companion example data\ndf.head(3)\n```\n|    | var      |          r |   moerror | label                     | group         |    ll |    hl |   n |    power |     p-val |\n|---:|:---------|-----------:|----------:|:--------------------------|:--------------|------:|------:|----:|---------:|----------:|\n|  0 | age      |  0.0903729 | 0.0696271 | in years                  | age           |  0.02 |  0.16 | 706 | 0.671578 | 0.0163089 |\n|  1 | black    | -0.0270573 | 0.0770573 | =1 if black               | other factors | -0.1  |  0.05 | 706 | 0.110805 | 0.472889  |\n|  2 | clerical |  0.0480811 | 0.0719189 | =1 if clerical worker     | occupation    | -0.03 |  0.12 | 706 | 0.247768 | 0.201948  |\n\n(* This is a toy example of how certain factors correlate with the amount of sleep one gets. See the [notebook that generates the data](https://nbviewer.org/github/LSYS/forestplot/blob/main/examples/get-sleep.ipynb).)\n\n<details><summary><i>The example input dataframe above have 4 key columns</i></summary>\n\n  | Column    | Description                                     | Required  |\n  |:----------|:------------------------------------------------|:----------|\n  | `var`     | Variable label                                  | &check;   |\n  | `r`       | Correlation coefficients (estimates to plot)    | &check;   |\n  | `label`   | Variable labels                                 | &check;   |\n  | `group`   | Variable grouping labels                        |           |\n  | `ll`      | Conf. int. *lower limits*                       |           |\n  | `hl`      | Containing the conf. int. *higher limits*       |           |\n  | `n`       | Sample size                                     |           |\n  | `power`   | Statistical power                               |           |\n  | `p-val`   | P-value                                         |           |\n\n  (See [Gallery and API Options](#gallery-and-api-options) for more details on required and optional arguments.)  \n</details>\n\nMake the forest plot\n```python\nfp.forestplot(df,  # the dataframe with results data\n              estimate=\"r\",  # col containing estimated effect size \n              ll=\"ll\", hl=\"hl\",  # columns containing conf. int. lower and higher limits\n              varlabel=\"label\",  # column containing variable label\n              ylabel=\"Confidence interval\",  # y-label title\n              xlabel=\"Pearson correlation\",  # x-label title\n              )\n```\n<p align=\"left\"><img width=\"75%\" src=\"https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/vanilla.png\"></p>\n\nSave the plot\n```python\nplt.savefig(\"plot.png\", bbox_inches=\"tight\")\n```\n<p align=\"right\">(<a href=\"#top\">back to top</a>)</p>\n\n<!------------------ EXAMPLES of CUSTOMIZATIONS ------------------>\n## Some Examples With Customizations[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#some-examples-with-customizations)\n\n1. Add variable groupings, add group order, and sort by estimate size.\n```python\nfp.forestplot(df,  # the dataframe with results data\n              estimate=\"r\",  # col containing estimated effect size \n              ll=\"ll\", hl=\"hl\",  # columns containing conf. int. lower and higher limits              \n              varlabel=\"label\",  # column containing variable label\n              capitalize=\"capitalize\",  # Capitalize labels\n              groupvar=\"group\",  # Add variable groupings \n              # group ordering\n              group_order=[\"labor factors\", \"occupation\", \"age\", \"health factors\", \n                           \"family factors\", \"area of residence\", \"other factors\"],\n              sort=True  # sort in ascending order (sorts within group if group is specified)               \n              )\n```\n<p align=\"left\"><img width=\"75%\" src=\"https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/group-grouporder-sort.png\"></p>\n\n2. Add p-values on the right and color alternate rows gray\n```python\nfp.forestplot(df,  # the dataframe with results data\n              estimate=\"r\",  # col containing estimated effect size \n              ll=\"ll\", hl=\"hl\",  # columns containing conf. int. lower and higher limits\n              varlabel=\"label\",  # column containing variable label\n              capitalize=\"capitalize\",  # Capitalize labels\n              groupvar=\"group\",  # Add variable groupings \n              # group ordering\n              group_order=[\"labor factors\", \"occupation\", \"age\", \"health factors\", \n                           \"family factors\", \"area of residence\", \"other factors\"],\n              sort=True,  # sort in ascending order (sorts within group if group is specified)               \n              pval=\"p-val\",  # Column of p-value to be reported on right\n              color_alt_rows=True,  # Gray alternate rows\n              ylabel=\"Est.(95% Conf. Int.)\",  # ylabel to print\n              **{\"ylabel1_size\": 11}  # control size of printed ylabel\n              )\n```\n\n<p align=\"left\"><img width=\"80%\" src=\"https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/group-grouporder-pvalue-sort-colorrows.png\"></p>\n\n\n3. Customize annotations and make it a table\n```python\nfp.forestplot(df,  # the dataframe with results data\n              estimate=\"r\",  # col containing estimated effect size \n              ll=\"ll\", hl=\"hl\",  # lower & higher limits of conf. int.\n              varlabel=\"label\",  # column containing the varlabels to be printed on far left\n              capitalize=\"capitalize\",  # Capitalize labels\n              pval=\"p-val\",  # column containing p-values to be formatted\n              annote=[\"n\", \"power\", \"est_ci\"],  # columns to report on left of plot\n              annoteheaders=[\"N\", \"Power\", \"Est. (95% Conf. Int.)\"],  # ^corresponding headers\n              rightannote=[\"formatted_pval\", \"group\"],  # columns to report on right of plot \n              right_annoteheaders=[\"P-value\", \"Variable group\"],  # ^corresponding headers\n              xlabel=\"Pearson correlation coefficient\",  # x-label title\n              table=True,  # Format as a table\n              )\n```\n\n<p align=\"left\"><img width=\"85%\" src=\"https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/leftannote-rightannote-table.png\"></p>\n\n4. Strip down all bells and whistle\n```python\nfp.forestplot(df,  # the dataframe with results data\n              estimate=\"r\",  # col containing estimated effect size \n              ll=\"ll\", hl=\"hl\",  # lower & higher limits of conf. int.\n              varlabel=\"label\",  # column containing the varlabels to be printed on far left\n              capitalize=\"capitalize\",  # Capitalize labels\n              ci_report=False,  # Turn off conf. int. reporting\n              flush=False,  # Turn off left-flush of text\n              **{'fontfamily': 'sans-serif'}  # revert to sans-serif                              \n              )\n```               \n<p align=\"left\"><img width=\"50%\" src=\"https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/vcoefplot.png\"></p>\n\n5. Example with more customizations\n```python\nfp.forestplot(df,  # the dataframe with results data\n              estimate=\"r\",  # col containing estimated effect size \n              ll=\"ll\", hl=\"hl\",  # lower & higher limits of conf. int.\n              varlabel=\"label\",  # column containing the varlabels to be printed on far left\n              capitalize=\"capitalize\",  # Capitalize labels\n              pval=\"p-val\",  # column containing p-values to be formatted\n              annote=[\"n\", \"power\", \"est_ci\"],  # columns to report on left of plot\n              annoteheaders=[\"N\", \"Power\", \"Est. (95% Conf. Int.)\"],  # ^corresponding headers\n              rightannote=[\"formatted_pval\", \"group\"],  # columns to report on right of plot \n              right_annoteheaders=[\"P-value\", \"Variable group\"],  # ^corresponding headers\n              groupvar=\"group\",  # column containing group labels\n              group_order=[\"labor factors\", \"occupation\", \"age\", \"health factors\", \n                           \"family factors\", \"area of residence\", \"other factors\"],                   \n              xlabel=\"Pearson correlation coefficient\",  # x-label title\n              xticks=[-.4,-.2,0, .2],  # x-ticks to be printed\n              sort=True,  # sort estimates in ascending order\n              table=True,  # Format as a table\n              # Additional kwargs for customizations\n              **{\"marker\": \"D\",  # set maker symbol as diamond\n                 \"markersize\": 35,  # adjust marker size\n                 \"xlinestyle\": (0, (10, 5)),  # long dash for x-reference line \n                 \"xlinecolor\": \"#808080\",  # gray color for x-reference line\n                 \"xtick_size\": 12,  # adjust x-ticker fontsize\n                }  \n              )\n```\n<p align=\"left\"><img width=\"100%\" src=\"https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/main.png\"></p>\n\n<details><summary><i>Annotations arguments allowed include:</i></summary>\n  \n  * `ci_range`: Confidence interval range (e.g. `(-0.39 to -0.25)`).\n  * `est_ci`: Estimate and CI (e.g. `-0.32(-0.39 to -0.25)`).\n  * `formatted_pval`: Formatted p-values (e.g. `0.01**`).\n  \n  To confirm what processed `columns` are available as annotations, you can do:\n  \n  ```python\n  processed_df, ax = fp.forestplot(df, \n                                   ...  # other arguments here\n                                   return_df=True  # return processed dataframe with processed columns\n                                  )\n  processed_df.head(3)\n  ```\n  \n  |    | label                | group         |   n |          r | CI95%         |       p-val |      BF10 |   power | var    |    hl |    ll |   moerror |   formatted_r |   formatted_ll |   formatted_hl | ci_range         | est_ci                | formatted_pval   |   formatted_n |   formatted_power | formatted_est_ci      | yticklabel                                                        | formatted_formatted_pval   | formatted_group   | yticklabel2            |\n|---:|:---------------------|:--------------|----:|-----------:|:--------------|------------:|----------:|--------:|:-------|------:|------:|----------:|--------------:|---------------:|---------------:|:-----------------|:----------------------|:-----------------|--------------:|------------------:|:----------------------|:------------------------------------------------------------------|:---------------------------|:------------------|:-----------------------|\n|  0 | Mins worked per week | Labor factors | 706 | -0.321384  | [-0.39 -0.25] | 1.99409e-18 | 1.961e+15 |    1    | totwrk | -0.25 | -0.39 | 0.0686165 |         -0.32 |          -0.39 |          -0.25 | (-0.39 to -0.25) | -0.32(-0.39 to -0.25) | 0.0***           |           706 |              1    | -0.32(-0.39 to -0.25) | Mins worked per week            706  1.0    -0.32(-0.39 to -0.25) | 0.0***                     | Labor factors     | 0.0***   Labor factors |\n|  1 | Years of schooling   | Labor factors | 706 | -0.0950039 | [-0.17 -0.02] | 0.0115515   | 1.137     |    0.72 | educ   | -0.02 | -0.17 | 0.0749961 |         -0.1  |          -0.17 |          -0.02 | (-0.17 to -0.02) | -0.10(-0.17 to -0.02) | 0.01**           |           706 |              0.72 | -0.10(-0.17 to -0.02) | Years of schooling              706  0.72   -0.10(-0.17 to -0.02) | 0.01**                     | Labor factors     | 0.01**   Labor factors |\n  \n</details>\n<p align=\"right\">(<a href=\"#top\">back to top</a>)</p>\n\n<!------------------- Multi-models ------------------->\n## Multi-models[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#multi-models)\n\nFor coefficient plots where each variable can have multiple estimates (each `model` has one).\n\n```python\nimport forestplot as fp\n\ndf_mmodel = pd.read_csv(\"../examples/data/sleep-mmodel.csv\").query(\n    \"model=='all' | model=='young kids'\"\n)\ndf_mmodel.head(3)\n```\n\n|    | var   |       coef |       se |         T |     pval |       r2 |     adj_r2 |         ll |      hl | model      | group         | label       |\n|---:|:------|-----------:|---------:|----------:|---------:|---------:|-----------:|-----------:|--------:|:-----------|:--------------|:------------|\n|  0 | age   |   0.994889 |  1.96925 |  0.505213 | 0.613625 | 0.127289 |  0.103656  |   -2.87382 |  4.8636 | all        | age           | in years    |\n|  3 | age   |  22.634    | 15.4953  |  1.4607   | 0.149315 | 0.178147 | -0.0136188 |   -8.36124 | 53.6293 | young kids | age           | in years    |\n|  4 | black | -84.7966   | 82.1501  | -1.03222  | 0.302454 | 0.127289 |  0.103656  | -246.186   | 76.5925 | all        | other factors | =1 if black |\n\n```python\nfp.mforestplot(\n    dataframe=df_mmodel,\n    estimate=\"coef\",\n    ll=\"ll\",\n    hl=\"hl\",\n    varlabel=\"label\",\n    capitalize=\"capitalize\",\n    model_col=\"model\",\n    color_alt_rows=True,\n    groupvar=\"group\",\n    table=True,\n    rightannote=[\"var\", \"group\"],\n    right_annoteheaders=[\"Source\", \"Group\"],\n    xlabel=\"Coefficient (95% CI)\",\n    modellabels=[\"Have young kids\", \"Full sample\"],\n    xticks=[-1200, -600, 0, 600],\n    mcolor=[\"#CC6677\", \"#4477AA\"],\n    # Additional kwargs for customizations\n    **{\n        \"markersize\": 30,\n        # override default vertical offset between models (0.0 to 1.0)\n        \"offset\": 0.35,  \n        \"xlinestyle\": (0, (10, 5)),  # long dash for x-reference line\n        \"xlinecolor\": \".8\",  # gray color for x-reference line\n    },\n)\n```\n<p align=\"left\"><img width=\"100%\" src=\"https://raw.githubusercontent.com/LSYS/forestplot/mplot-dev/docs/images/multimodel.png\"></p>\n\nPlease note: This module is still experimental. See [this jupyter notebook](https://nbviewer.org/github/LSYS/forestplot/blob/mplot-dev/examples/test-multmodel-sleep.ipynb) for more examples and tweaks.\n\n<!------------------- GALLERY AND API OPTIONS ------------------->\n## Gallery and API Options[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#gallery-and-api-options)\n\n[![Notebooks](https://github.com/LSYS/forestplot/actions/workflows/nb.yml/badge.svg)](https://github.com/LSYS/forestplot/actions/workflows/nb.yml)\n\nCheck out [this jupyter notebook](https://nbviewer.org/github/LSYS/forestplot/blob/main/examples/readme-examples.ipynb) for a gallery variations of forest plots possible out-of-the-box.\nThe table below shows the list of arguments users can pass in.\nMore fined-grained control for base plot options (eg font sizes, marker colors) can be inferred from the [example notebook gallery](https://nbviewer.org/github/LSYS/forestplot/blob/main/examples/readme-examples.ipynb). \n\n\n| Option      | Description                                                                                                                                                 | Required   |\n|:-------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:---|\n| `dataframe`           | Pandas dataframe where rows are variables (or studies for meta-analyses) and columns include estimated effect sizes, labels, and confidence intervals, etc. | &check; |\n| `estimate`            | Name of column in `dataframe` containing the *estimates*.                                                                                                   | &check; |\n| `varlabel`            | Name of column in `dataframe` containing the *variable labels* (study labels if meta-analyses).                                                             | &check; |\n| `ll`                  | Name of column in `dataframe` containing the conf. int. *lower limits*.                                                                                     |  |\n| `hl`                  | Name of column in `dataframe` containing the conf. int. *higher limits*.                                                                                    |  |\n| `logscale`            | If True, make the x-axis log scale. Default is False.                                                                                                     |  |\n| `capitalize`          | How to capitalize strings. Default is None. One of \"capitalize\", \"title\", \"lower\", \"upper\", \"swapcase\".                                                      | |\n| `form_ci_report`      | If True (default), report the estimates and confidence interval beside the variable labels.                                                                 |          |\n| `ci_report`           | If True (default), format the confidence interval as a string.                                                                                              |          |\n| `groupvar`            | Name of column in `dataframe` containing the variable *grouping labels*.                                                                                    |       |\n| `group_order`         | List of group labels indicating the order of groups to report in the plot.                                                                                  |       |\n| `annote`              | List of columns to add as annotations on the left-hand side of the plot.                                                                                    |       |\n| `annoteheaders`       | List of column headers for the left-hand side annotations.                                                                                                  |       |\n| `rightannote`         | List of columns to add as annotations on the right-hand side of the plot.                                                                                   |       |\n| `right_annoteheaders` | List of column headers for the right-hand side annotations.                                                                                                 |       |\n| `pval`                | Name of column in `dataframe` containing the p-values.                                                                                                      |       |\n| `starpval`            | If True (default), format p-values with stars indicating statistical significance.                                                                          |          |\n| `sort`                | If True, sort variables by `estimate` values in ascending order.                                                                                            |          |\n| `sortby`              | Name of column to sort by. Default is `estimate`.                                                                                                           |       |\n| `flush`               | If True (default), left-flush variable labels and annotations.                                                                                              |          |\n| `decimal_precision`   | Number of decimal places to print. (Default = 2)                                                                                                            |          |\n| `figsize`             | Tuple indicating core figure size. Default is (4, 8)                                                                                                        |          |\n| `xticks`              | List of xticklabels to print on x-axis.                                                                                                                     |       |\n| `ylabel`              | Y-label title.                                                                                                                                              |      |\n| `xlabel`              | X-label title.                                                                                                                                              |       |\n| `color_alt_rows`      | If True, shade out alternating rows in gray.                                                                                                                |          |\n| `preprocess`          | If True (default), preprocess the `dataframe` before plotting.                                                                                              |          |\n| `return_df`           | If True, returned the preprocessed `dataframe`.                                                                                                             |          |\n\n<p align=\"right\">(<a href=\"#top\">back to top</a>)</p>\n\n<!------------------------ KNOWN ISSUES ------------------------>\n## Known Issues[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#known-issues)\n\n* Variable labels coinciding with group variables may lead to unexpected formatting issues in the graph.\n* Left-flushing of annotations relies on the `monospace` font.\n* Plot may give strange behavior for few rows of data (six rows or fewer. [see this issue](https://github.com/LSYS/forestplot/issues/52))\n* Plot can get cluttered with too many variables/rows (~30 onwards) \n* Not tested with PyCharm (#80) nor Google Colab (#110).\n* Duplicated `varlabel` may lead to unexpected results (see #76, #81). `mplot` for grouped models could be useful for such cases (see #59, WIP).\n<p align=\"right\">(<a href=\"#top\">back to top</a>)</p>\n\n<!----------------- BACKGROUND AND ADDITIONAL RESOURCES ----------------->\n## Background and Additional Resources[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#background-and-additional-resources)\n\n**More about forest plots**\n\n[Forest plots](https://en.wikipedia.org/wiki/Forest_plot) have many aliases (h/t Chris Alexiuk). Other names include coefplots, coefficient plots, meta-analysis plots, dot-and-whisker plots, blobbograms, margins plots, regression plots, and ropeladder plots. \n\n[Forest plots](https://en.wikipedia.org/wiki/Forest_plot) in the medical and health sciences literature are plots that report results from different studies as a meta-analysis. Markers are centered on the estimated effect and horizontal lines running through each marker depicts the confidence intervals.\n\nThe simplest version of a forest plot has two columns: one for the variables/studies, and the second for the estimated coefficients and confidence intervals.\nThis layout is similar to coefficient plots ([coefplots](http://repec.sowi.unibe.ch/stata/coefplot/getting-started.html)) and is thus useful for more than meta-analyses.\n\n<details><summary><i>More resources about forest plots</i></summary><p>\n\n* [[1]](https://doi.org/10.1038/s41433-021-01867-6) Chang, Y., Phillips, M.R., Guymer, R.H. et al. The 5 min meta-analysis: understanding how to read and interpret a forest plot. Eye 36, 673\u2013675 (2022).\n* [[2]](https://doi.org/10.1136/bmj.322.7300.1479) Lewis S, Clarke M. Forest plots: trying to see the wood and the trees BMJ 2001; 322 :1479 \n</p></details><p></p>\n\n**More about this package**\n\nThe package is lightweight, built on `pandas`, `numpy`, and `matplotlib`.\n\nIt is slightly opinioniated in that the aesthetics of the plot inherits some of my sensibilities about what makes a nice figure.\nYou can however easily override most defaults for the look of the graph. This is possible via `**kwargs` in the `forestplot` API (see [Gallery and API options](#gallery-and-api-options)) and the `matplotlib` API.\n\n**Planned enhancements** include forest plots where each row can have multiple coefficients (e.g. from multiple models). \n\n<details><summary><i>Related packages</i></summary><p>\n\n* [[1]](https://www.stata-journal.com/article.html?article=gr0059) [Stata] Jann, Ben (2014). Plotting regression coefficients and other estimates. The Stata Journal 14(4): 708-737. \n* [[2]](https://www.statsmodels.org/devel/examples/notebooks/generated/metaanalysis1.html) [Python] Meta-Analysis in statsmodels\n* [[3]](https://github.com/seafloor/forestplot) [Python] Matt Bracher-Smith's Forestplot\n* [[4]](https://github.com/fsolt/dotwhisker) [R] Solt, Frederick and Hu, Yue (2021) dotwhisker: Dot-and-Whisker Plots of Regression Results\n* [[5]](https://rpubs.com/mbounthavong/forest_plots_r) [R] Bounthavong, Mark (2021) Forest plots. RPubs by RStudio\n</p></details><p></p>\n\n<p align=\"right\">(<a href=\"#top\">back to top</a>)</p>\n\n\n<!----------------------- CONTRIBUTING ----------------------->\n## Contributing[![](https://raw.githubusercontent.com/LSYS/forestplot/main/docs/images/pin.svg)](#contributing)\n\nContributions are welcome, and they are greatly appreciated!\n\n**Potential ways to contribute:**\n\n* Raise issues/bugs/questions\n* Write tests for missing coverage\n* Add features (see [examples notebook](https://nbviewer.org/github/LSYS/forestplot/blob/main/examples/readme-examples.ipynb) for a survey of  existing features)\n* Add example datasets with companion graphs\n* Add your graphs with companion code\n\n**Issues**\n\nPlease submit bugs, questions, or issues you encounter to the [GitHub Issue Tracker](https://github.com/lsys/forestplot/issues).\nFor bugs, please provide a minimal reproducible example demonstrating the problem (it may help me troubleshoot if I have a version of your data).\n\n**Pull Requests**\n\nPlease feel free to open an issue on the [Issue Tracker](https://github.com/lsys/forestplot/issues) if you'd like to discuss potential contributions via PRs.\n\n<p align=\"right\">(<a href=\"#top\">back to top</a>)</p>\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package to make publication-ready but customizable forest plots.",
    "version": "0.4.1",
    "project_urls": {
        "Homepage": "https://github.com/lsys/forestplot"
    },
    "split_keywords": [
        "visualization",
        " python",
        " data-science",
        " dataviz",
        " pandas",
        " matplotlib",
        " mpl",
        " forestplot",
        " blobbogram"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2f91d58d82633a8f48838c5ca2c34fa459dceefc56b227c90db90393ffbc4c75",
                "md5": "cbec623c889d083d7af68f513660d7dd",
                "sha256": "f863f255d336d690e3c3e36f7045bceff779542270b6b886a0e84562e98739c4"
            },
            "downloads": -1,
            "filename": "forestplot-0.4.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cbec623c889d083d7af68f513660d7dd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 37055,
            "upload_time": "2024-07-28T07:25:36",
            "upload_time_iso_8601": "2024-07-28T07:25:36.185433Z",
            "url": "https://files.pythonhosted.org/packages/2f/91/d58d82633a8f48838c5ca2c34fa459dceefc56b227c90db90393ffbc4c75/forestplot-0.4.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a9acb33e2050f0c69df601e9f323a0dbe49f6a49be9dc79c513536d80c5c5fcd",
                "md5": "71bcce28732cfa40106a8f2a7adab83e",
                "sha256": "ffba9fe7781d8cddd468ff63942e751786a312bc810d6fa0ff311187f577b9c0"
            },
            "downloads": -1,
            "filename": "forestplot-0.4.1.tar.gz",
            "has_sig": false,
            "md5_digest": "71bcce28732cfa40106a8f2a7adab83e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 44854,
            "upload_time": "2024-07-28T07:25:38",
            "upload_time_iso_8601": "2024-07-28T07:25:38.321782Z",
            "url": "https://files.pythonhosted.org/packages/a9/ac/b33e2050f0c69df601e9f323a0dbe49f6a49be9dc79c513536d80c5c5fcd/forestplot-0.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-28 07:25:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lsys",
    "github_project": "forestplot",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "tox": true,
    "lcname": "forestplot"
}
        
Elapsed time: 0.76812s