formulas


Nameformulas JSON
Version 1.2.8 PyPI version JSON
download
home_pagehttps://github.com/vinci1it2000/formulas
SummaryParse and compile Excel formulas and workbooks in python code.
upload_time2024-07-16 12:13:17
maintainerNone
docs_urlNone
authorVincenzo Arcidiacono
requires_pythonNone
licenseEUPL 1.1+
keywords python utility library excel formulas processing calculation dependencies resolution scientific engineering dispatch compiling
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. _start-intro:


What is formulas?
*****************

**formulas** implements an interpreter for Excel formulas, which
parses and compile Excel formulas expressions.

Moreover, it compiles Excel workbooks to python and executes without
using the Excel COM server. Hence, **Excel is not needed**.


Installation
************

To install it use (with root privileges):

.. code:: console

   $ pip install formulas

Or download the last git version and use (with root privileges):

.. code:: console

   $ python setup.py install


Install extras
==============

Some additional functionality is enabled installing the following
extras:

*  excel: enables to compile Excel workbooks to python and execute
   using: ``ExcelModel``.

*  plot: enables to plot the formula ast and the Excel model.

To install formulas and all extras, do:

.. code:: console

   $ pip install formulas[all]


Development version
===================

To help with the testing and the development of *formulas*, you can
install the development version:

.. code:: console

   $ pip install https://github.com/vinci1it2000/formulas/archive/dev.zip

.. _end-quick:


Basic Examples
**************

The following sections will show how to:

*  parse a Excel formulas;

*  load, compile, and execute a Excel workbook;

*  extract a sub-model from a Excel workbook;

*  add a custom function.


Parsing formula
===============

An example how to parse and execute an Excel formula is the following:

>>> import formulas
>>> func = formulas.Parser().ast('=(1 + 1) + B3 / A2')[1].compile()

To visualize formula model and get the input order you can do the
following:

>>> list(func.inputs)
['A2', 'B3']
>>> func.plot(view=False)  # Set view=True to plot in the default browser.
SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])

[graph]

Finally to execute the formula and plot the workflow:

>>> func(1, 5)
Array(7.0, dtype=object)
>>> func.plot(workflow=True, view=False)  # Set view=True to plot in the default browser.
SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])

[graph]


Excel workbook
==============

An example how to load, calculate, and write an Excel workbook is the
following:

::

   >>> import formulas
   >>> fpath, dir_output = 'excel.xlsx', 'output'  
   >>> xl_model = formulas.ExcelModel().loads(fpath).finish()
   >>> xl_model.calculate()
   Solution(...)
   >>> xl_model.write(dirpath=dir_output)
   {'EXCEL.XLSX': {Book: <openpyxl.workbook.workbook.Workbook ...>}}

Tip: If you have or could have **circular references**, add
   *circular=True* to *finish* method.

To plot the dependency graph that depict relationships between Excel
cells:

>>> dsp = xl_model.dsp
>>> dsp.plot(view=False)  # Set view=True to plot in the default browser.
SiteMap([(ExcelModel, SiteMap(...))])

[graph]

To overwrite the default inputs that are defined by the excel file or
to impose some value to a specific cell:

>>> xl_model.calculate(
...     inputs={
...         "'[excel.xlsx]'!INPUT_A": 3,  # To overwrite the default value.
...         "'[excel.xlsx]DATA'!B3": 1  # To impose a value to B3 cell.
...     },
...     outputs=[
...        "'[excel.xlsx]DATA'!C2", "'[excel.xlsx]DATA'!C4"
...     ] # To define the outputs that you want to calculate.
... )
Solution([("'[excel.xlsx]'!INPUT_A", <Ranges>('[excel.xlsx]DATA'!A2)=[[3]]),
          ("'[excel.xlsx]DATA'!B3", <Ranges>('[excel.xlsx]DATA'!B3)=[[1]]),
          ("'[excel.xlsx]DATA'!A2", <Ranges>('[excel.xlsx]DATA'!A2)=[[3]]),
          ("'[excel.xlsx]DATA'!A3", <Ranges>('[excel.xlsx]DATA'!A3)=[[6]]),
          ("'[excel.xlsx]DATA'!D2", <Ranges>('[excel.xlsx]DATA'!D2)=[[1]]),
          ("'[excel.xlsx]'!INPUT_B", <Ranges>('[excel.xlsx]DATA'!A3)=[[6]]),
          ("'[excel.xlsx]DATA'!B2", <Ranges>('[excel.xlsx]DATA'!B2)=[[9.0]]),
          ("'[excel.xlsx]DATA'!D3", <Ranges>('[excel.xlsx]DATA'!D3)=[[2.0]]),
          ("'[excel.xlsx]DATA'!C2", <Ranges>('[excel.xlsx]DATA'!C2)=[[10.0]]),
          ("'[excel.xlsx]DATA'!D4", <Ranges>('[excel.xlsx]DATA'!D4)=[[3.0]]),
          ("'[excel.xlsx]DATA'!C4", <Ranges>('[excel.xlsx]DATA'!C4)=[[4.0]])])

To build a single function out of an excel model with fixed inputs and
outputs, you can use the *compile* method of the *ExcelModel* that
returns a `DispatchPipe
<https://schedula.readthedocs.io/en/master/_build/schedula/utils/dsp/schedula.utils.dsp.DispatchPipe.html#schedula.utils.dsp.DispatchPipe>`_.
This is a function where the inputs and outputs are defined by the
data node ids (i.e., cell references).

>>> func = xl_model.compile(
...     inputs=[
...         "'[excel.xlsx]'!INPUT_A",  # First argument of the function.
...         "'[excel.xlsx]DATA'!B3"   # Second argument of the function.
...     ], # To define function inputs.
...     outputs=[
...         "'[excel.xlsx]DATA'!C2", "'[excel.xlsx]DATA'!C4"
...     ] # To define function outputs.
... )
>>> func
<schedula.utils.dsp.DispatchPipe object at ...>
>>> [v.value[0, 0] for v in func(3, 1)]  # To retrieve the data.
[10.0, 4.0]
>>> func.plot(view=False)  # Set view=True to plot in the default browser.
SiteMap([(ExcelModel, SiteMap(...))])

[graph]

Alternatively, to load a partial excel model from the output cells,
you can use the *from_ranges* method of the *ExcelModel*:

>>> xl = formulas.ExcelModel().from_ranges(
...     "'[%s]DATA'!C2:D2" % fpath,  # Output range.
...     "'[%s]DATA'!B4" % fpath,  # Output cell.
... )
>>> dsp = xl.dsp
>>> sorted(dsp.data_nodes)
["'[excel.xlsx]'!INPUT_A",
 "'[excel.xlsx]'!INPUT_B",
 "'[excel.xlsx]'!INPUT_C",
 "'[excel.xlsx]DATA'!A2",
 "'[excel.xlsx]DATA'!A3",
 "'[excel.xlsx]DATA'!A3:A4",
 "'[excel.xlsx]DATA'!A4",
 "'[excel.xlsx]DATA'!B2",
 "'[excel.xlsx]DATA'!B3",
 "'[excel.xlsx]DATA'!B4",
 "'[excel.xlsx]DATA'!C2",
 "'[excel.xlsx]DATA'!D2"]

[graph]


JSON export/import
------------------

The *ExcelModel* can be exported/imported to/from a readable JSON
format. The reason of this functionality is to have format that can be
easily maintained (e.g. using version control programs like *git*).
Follows an example on how to export/import to/from JSON an
*ExcelModel*:

::

   >>> import json
   >>> xl_dict = xl_model.to_dict()  # To JSON-able dict.
   >>> xl_dict  # Exported format. 
   {
    "'[excel.xlsx]DATA'!A1": "inputs",
    "'[excel.xlsx]DATA'!B1": "Intermediate",
    "'[excel.xlsx]DATA'!C1": "outputs",
    "'[excel.xlsx]DATA'!D1": "defaults",
    "'[excel.xlsx]DATA'!A2": 2,
    "'[excel.xlsx]DATA'!D2": 1,
    "'[excel.xlsx]DATA'!A3": 6,
    "'[excel.xlsx]DATA'!A4": 5,
    "'[excel.xlsx]DATA'!B2": "=('[excel.xlsx]DATA'!A2 + '[excel.xlsx]DATA'!A3)",
    "'[excel.xlsx]DATA'!C2": "=(('[excel.xlsx]DATA'!B2 / '[excel.xlsx]DATA'!B3) + '[excel.xlsx]DATA'!D2)",
    "'[excel.xlsx]DATA'!B3": "=('[excel.xlsx]DATA'!B2 - '[excel.xlsx]DATA'!A3)",
    "'[excel.xlsx]DATA'!C3": "=(('[excel.xlsx]DATA'!C2 * '[excel.xlsx]DATA'!A2) + '[excel.xlsx]DATA'!D3)",
    "'[excel.xlsx]DATA'!D3": "=(1 + '[excel.xlsx]DATA'!D2)",
    "'[excel.xlsx]DATA'!B4": "=MAX('[excel.xlsx]DATA'!A3:A4, '[excel.xlsx]DATA'!B2)",
    "'[excel.xlsx]DATA'!C4": "=(('[excel.xlsx]DATA'!B3 ^ '[excel.xlsx]DATA'!C2) + '[excel.xlsx]DATA'!D4)",
    "'[excel.xlsx]DATA'!D4": "=(1 + '[excel.xlsx]DATA'!D3)"
   }
   >>> xl_json = json.dumps(xl_dict, indent=True)  # To JSON.
   >>> xl_model = formulas.ExcelModel().from_dict(json.loads(xl_json))  # From JSON.


Custom functions
================

An example how to add a custom function to the formula parser is the
following:

>>> import formulas
>>> FUNCTIONS = formulas.get_functions()
>>> FUNCTIONS['MYFUNC'] = lambda x, y: 1 + y + x
>>> func = formulas.Parser().ast('=MYFUNC(1, 2)')[1].compile()
>>> func()
4

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/vinci1it2000/formulas",
    "name": "formulas",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, utility, library, excel, formulas, processing, calculation, dependencies, resolution, scientific, engineering, dispatch, compiling",
    "author": "Vincenzo Arcidiacono",
    "author_email": "vinci1it2000@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/fe/4e/8f8a31d038f9c4f5e3c4fbffdf1152cec088b3411bf3f182133590567578/formulas-1.2.8.tar.gz",
    "platform": null,
    "description": ".. _start-intro:\n\n\nWhat is formulas?\n*****************\n\n**formulas** implements an interpreter for Excel formulas, which\nparses and compile Excel formulas expressions.\n\nMoreover, it compiles Excel workbooks to python and executes without\nusing the Excel COM server. Hence, **Excel is not needed**.\n\n\nInstallation\n************\n\nTo install it use (with root privileges):\n\n.. code:: console\n\n   $ pip install formulas\n\nOr download the last git version and use (with root privileges):\n\n.. code:: console\n\n   $ python setup.py install\n\n\nInstall extras\n==============\n\nSome additional functionality is enabled installing the following\nextras:\n\n*  excel: enables to compile Excel workbooks to python and execute\n   using: ``ExcelModel``.\n\n*  plot: enables to plot the formula ast and the Excel model.\n\nTo install formulas and all extras, do:\n\n.. code:: console\n\n   $ pip install formulas[all]\n\n\nDevelopment version\n===================\n\nTo help with the testing and the development of *formulas*, you can\ninstall the development version:\n\n.. code:: console\n\n   $ pip install https://github.com/vinci1it2000/formulas/archive/dev.zip\n\n.. _end-quick:\n\n\nBasic Examples\n**************\n\nThe following sections will show how to:\n\n*  parse a Excel formulas;\n\n*  load, compile, and execute a Excel workbook;\n\n*  extract a sub-model from a Excel workbook;\n\n*  add a custom function.\n\n\nParsing formula\n===============\n\nAn example how to parse and execute an Excel formula is the following:\n\n>>> import formulas\n>>> func = formulas.Parser().ast('=(1 + 1) + B3 / A2')[1].compile()\n\nTo visualize formula model and get the input order you can do the\nfollowing:\n\n>>> list(func.inputs)\n['A2', 'B3']\n>>> func.plot(view=False)  # Set view=True to plot in the default browser.\nSiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])\n\n[graph]\n\nFinally to execute the formula and plot the workflow:\n\n>>> func(1, 5)\nArray(7.0, dtype=object)\n>>> func.plot(workflow=True, view=False)  # Set view=True to plot in the default browser.\nSiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])\n\n[graph]\n\n\nExcel workbook\n==============\n\nAn example how to load, calculate, and write an Excel workbook is the\nfollowing:\n\n::\n\n   >>> import formulas\n   >>> fpath, dir_output = 'excel.xlsx', 'output'  \n   >>> xl_model = formulas.ExcelModel().loads(fpath).finish()\n   >>> xl_model.calculate()\n   Solution(...)\n   >>> xl_model.write(dirpath=dir_output)\n   {'EXCEL.XLSX': {Book: <openpyxl.workbook.workbook.Workbook ...>}}\n\nTip: If you have or could have **circular references**, add\n   *circular=True* to *finish* method.\n\nTo plot the dependency graph that depict relationships between Excel\ncells:\n\n>>> dsp = xl_model.dsp\n>>> dsp.plot(view=False)  # Set view=True to plot in the default browser.\nSiteMap([(ExcelModel, SiteMap(...))])\n\n[graph]\n\nTo overwrite the default inputs that are defined by the excel file or\nto impose some value to a specific cell:\n\n>>> xl_model.calculate(\n...     inputs={\n...         \"'[excel.xlsx]'!INPUT_A\": 3,  # To overwrite the default value.\n...         \"'[excel.xlsx]DATA'!B3\": 1  # To impose a value to B3 cell.\n...     },\n...     outputs=[\n...        \"'[excel.xlsx]DATA'!C2\", \"'[excel.xlsx]DATA'!C4\"\n...     ] # To define the outputs that you want to calculate.\n... )\nSolution([(\"'[excel.xlsx]'!INPUT_A\", <Ranges>('[excel.xlsx]DATA'!A2)=[[3]]),\n          (\"'[excel.xlsx]DATA'!B3\", <Ranges>('[excel.xlsx]DATA'!B3)=[[1]]),\n          (\"'[excel.xlsx]DATA'!A2\", <Ranges>('[excel.xlsx]DATA'!A2)=[[3]]),\n          (\"'[excel.xlsx]DATA'!A3\", <Ranges>('[excel.xlsx]DATA'!A3)=[[6]]),\n          (\"'[excel.xlsx]DATA'!D2\", <Ranges>('[excel.xlsx]DATA'!D2)=[[1]]),\n          (\"'[excel.xlsx]'!INPUT_B\", <Ranges>('[excel.xlsx]DATA'!A3)=[[6]]),\n          (\"'[excel.xlsx]DATA'!B2\", <Ranges>('[excel.xlsx]DATA'!B2)=[[9.0]]),\n          (\"'[excel.xlsx]DATA'!D3\", <Ranges>('[excel.xlsx]DATA'!D3)=[[2.0]]),\n          (\"'[excel.xlsx]DATA'!C2\", <Ranges>('[excel.xlsx]DATA'!C2)=[[10.0]]),\n          (\"'[excel.xlsx]DATA'!D4\", <Ranges>('[excel.xlsx]DATA'!D4)=[[3.0]]),\n          (\"'[excel.xlsx]DATA'!C4\", <Ranges>('[excel.xlsx]DATA'!C4)=[[4.0]])])\n\nTo build a single function out of an excel model with fixed inputs and\noutputs, you can use the *compile* method of the *ExcelModel* that\nreturns a `DispatchPipe\n<https://schedula.readthedocs.io/en/master/_build/schedula/utils/dsp/schedula.utils.dsp.DispatchPipe.html#schedula.utils.dsp.DispatchPipe>`_.\nThis is a function where the inputs and outputs are defined by the\ndata node ids (i.e., cell references).\n\n>>> func = xl_model.compile(\n...     inputs=[\n...         \"'[excel.xlsx]'!INPUT_A\",  # First argument of the function.\n...         \"'[excel.xlsx]DATA'!B3\"   # Second argument of the function.\n...     ], # To define function inputs.\n...     outputs=[\n...         \"'[excel.xlsx]DATA'!C2\", \"'[excel.xlsx]DATA'!C4\"\n...     ] # To define function outputs.\n... )\n>>> func\n<schedula.utils.dsp.DispatchPipe object at ...>\n>>> [v.value[0, 0] for v in func(3, 1)]  # To retrieve the data.\n[10.0, 4.0]\n>>> func.plot(view=False)  # Set view=True to plot in the default browser.\nSiteMap([(ExcelModel, SiteMap(...))])\n\n[graph]\n\nAlternatively, to load a partial excel model from the output cells,\nyou can use the *from_ranges* method of the *ExcelModel*:\n\n>>> xl = formulas.ExcelModel().from_ranges(\n...     \"'[%s]DATA'!C2:D2\" % fpath,  # Output range.\n...     \"'[%s]DATA'!B4\" % fpath,  # Output cell.\n... )\n>>> dsp = xl.dsp\n>>> sorted(dsp.data_nodes)\n[\"'[excel.xlsx]'!INPUT_A\",\n \"'[excel.xlsx]'!INPUT_B\",\n \"'[excel.xlsx]'!INPUT_C\",\n \"'[excel.xlsx]DATA'!A2\",\n \"'[excel.xlsx]DATA'!A3\",\n \"'[excel.xlsx]DATA'!A3:A4\",\n \"'[excel.xlsx]DATA'!A4\",\n \"'[excel.xlsx]DATA'!B2\",\n \"'[excel.xlsx]DATA'!B3\",\n \"'[excel.xlsx]DATA'!B4\",\n \"'[excel.xlsx]DATA'!C2\",\n \"'[excel.xlsx]DATA'!D2\"]\n\n[graph]\n\n\nJSON export/import\n------------------\n\nThe *ExcelModel* can be exported/imported to/from a readable JSON\nformat. The reason of this functionality is to have format that can be\neasily maintained (e.g. using version control programs like *git*).\nFollows an example on how to export/import to/from JSON an\n*ExcelModel*:\n\n::\n\n   >>> import json\n   >>> xl_dict = xl_model.to_dict()  # To JSON-able dict.\n   >>> xl_dict  # Exported format. \n   {\n    \"'[excel.xlsx]DATA'!A1\": \"inputs\",\n    \"'[excel.xlsx]DATA'!B1\": \"Intermediate\",\n    \"'[excel.xlsx]DATA'!C1\": \"outputs\",\n    \"'[excel.xlsx]DATA'!D1\": \"defaults\",\n    \"'[excel.xlsx]DATA'!A2\": 2,\n    \"'[excel.xlsx]DATA'!D2\": 1,\n    \"'[excel.xlsx]DATA'!A3\": 6,\n    \"'[excel.xlsx]DATA'!A4\": 5,\n    \"'[excel.xlsx]DATA'!B2\": \"=('[excel.xlsx]DATA'!A2 + '[excel.xlsx]DATA'!A3)\",\n    \"'[excel.xlsx]DATA'!C2\": \"=(('[excel.xlsx]DATA'!B2 / '[excel.xlsx]DATA'!B3) + '[excel.xlsx]DATA'!D2)\",\n    \"'[excel.xlsx]DATA'!B3\": \"=('[excel.xlsx]DATA'!B2 - '[excel.xlsx]DATA'!A3)\",\n    \"'[excel.xlsx]DATA'!C3\": \"=(('[excel.xlsx]DATA'!C2 * '[excel.xlsx]DATA'!A2) + '[excel.xlsx]DATA'!D3)\",\n    \"'[excel.xlsx]DATA'!D3\": \"=(1 + '[excel.xlsx]DATA'!D2)\",\n    \"'[excel.xlsx]DATA'!B4\": \"=MAX('[excel.xlsx]DATA'!A3:A4, '[excel.xlsx]DATA'!B2)\",\n    \"'[excel.xlsx]DATA'!C4\": \"=(('[excel.xlsx]DATA'!B3 ^ '[excel.xlsx]DATA'!C2) + '[excel.xlsx]DATA'!D4)\",\n    \"'[excel.xlsx]DATA'!D4\": \"=(1 + '[excel.xlsx]DATA'!D3)\"\n   }\n   >>> xl_json = json.dumps(xl_dict, indent=True)  # To JSON.\n   >>> xl_model = formulas.ExcelModel().from_dict(json.loads(xl_json))  # From JSON.\n\n\nCustom functions\n================\n\nAn example how to add a custom function to the formula parser is the\nfollowing:\n\n>>> import formulas\n>>> FUNCTIONS = formulas.get_functions()\n>>> FUNCTIONS['MYFUNC'] = lambda x, y: 1 + y + x\n>>> func = formulas.Parser().ast('=MYFUNC(1, 2)')[1].compile()\n>>> func()\n4\n",
    "bugtrack_url": null,
    "license": "EUPL 1.1+",
    "summary": "Parse and compile Excel formulas and workbooks in python code.",
    "version": "1.2.8",
    "project_urls": {
        "Documentation": "http://formulas.readthedocs.io",
        "Donate": "https://donorbox.org/formulas",
        "Download": "https://github.com/vinci1it2000/formulas/tarball/v1.2.8",
        "Homepage": "https://github.com/vinci1it2000/formulas",
        "Issue tracker": "https://github.com/vinci1it2000/formulas/issues"
    },
    "split_keywords": [
        "python",
        " utility",
        " library",
        " excel",
        " formulas",
        " processing",
        " calculation",
        " dependencies",
        " resolution",
        " scientific",
        " engineering",
        " dispatch",
        " compiling"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "edc5df19ed836d155bc864bc41c4d421f349154d439533ef0c5b6efc3dbdce61",
                "md5": "a9361f4841d61c9ce0eafd97e03632a3",
                "sha256": "945dd4c5ed196f636dcef617decc25254633c66ee47f0e19b278b3a51ba3c2be"
            },
            "downloads": -1,
            "filename": "formulas-1.2.8-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a9361f4841d61c9ce0eafd97e03632a3",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 66448,
            "upload_time": "2024-07-16T12:13:15",
            "upload_time_iso_8601": "2024-07-16T12:13:15.738321Z",
            "url": "https://files.pythonhosted.org/packages/ed/c5/df19ed836d155bc864bc41c4d421f349154d439533ef0c5b6efc3dbdce61/formulas-1.2.8-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fe4e8f8a31d038f9c4f5e3c4fbffdf1152cec088b3411bf3f182133590567578",
                "md5": "6f8543b56be6a20fd844ae833868190c",
                "sha256": "18797a7be313e9daf2ac2b99f0dacc237756c73b1d1b29b66d63450a71208ddd"
            },
            "downloads": -1,
            "filename": "formulas-1.2.8.tar.gz",
            "has_sig": false,
            "md5_digest": "6f8543b56be6a20fd844ae833868190c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 70350,
            "upload_time": "2024-07-16T12:13:17",
            "upload_time_iso_8601": "2024-07-16T12:13:17.616158Z",
            "url": "https://files.pythonhosted.org/packages/fe/4e/8f8a31d038f9c4f5e3c4fbffdf1152cec088b3411bf3f182133590567578/formulas-1.2.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-16 12:13:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "vinci1it2000",
    "github_project": "formulas",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "formulas"
}
        
Elapsed time: 0.29500s