fortitudo-tech


Namefortitudo-tech JSON
Version 1.1.4 PyPI version JSON
download
home_pagehttps://fortitudo.tech
SummaryEntropy Pooling views and stress-testing combined with Conditional Value-at-Risk (CVaR) portfolio optimization in Python.
upload_time2024-11-05 20:10:49
maintainerNone
docs_urlNone
authorFortitudo Technologies
requires_python<3.14,>=3.9
licenseGPL-3.0-or-later
keywords cvar efficient frontier entropy pooling quantitative finance portfolio optimization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            |Pytest| |Codecov| |Binder|

.. |Pytest| image:: https://github.com/fortitudo-tech/fortitudo.tech/actions/workflows/tests.yml/badge.svg
   :target: https://github.com/fortitudo-tech/fortitudo.tech/actions/workflows/tests.yml

.. |Codecov| image:: https://codecov.io/gh/fortitudo-tech/fortitudo.tech/graph/badge.svg?token=Z16XK92Gkl 
   :target: https://codecov.io/gh/fortitudo-tech/fortitudo.tech

.. |Binder| image:: https://mybinder.org/badge_logo.svg
   :target: https://mybinder.org/v2/gh/fortitudo-tech/fortitudo.tech/main?labpath=examples

Fortitudo Technologies Open Source
==================================

This package allows you to explore open-source implementations of some of our
fundamental technologies, e.g., Entropy Pooling and CVaR optimization in Python.

See this `YouTube playlist <https://www.youtube.com/playlist?list=PLfI2BKNVj_b2rurUsCtc2F8lqtPWqcs2K>`_
for a walkthrough of the package's functionality and examples.

For a high-level introduction to the investment framework, see this `YouTube video <https://youtu.be/4ESigySdGf8>`_
and `Substack post <https://open.substack.com/pub/antonvorobets/p/entropy-pooling-and-cvar-portfolio-optimization-in-python-ffed736a8347>`_.

For a mathematical introduction to the investment framework, see these
`SSRN articles <https://ssrn.com/author=2738420>`_.

For a pedagogical and deep presentation of the investment framework,
you can access the `Portfolio Construction and Risk Management Book <https://igg.me/at/pcrm-book>`_.

Audience
--------

The package is intended for advanced users who are comfortable specifying
portfolio constraints and Entropy Pooling views using matrices and vectors.
This gives full flexibility in relation to working with these technologies.
Hence, input checking is intentionally kept to a minimum.

Company
-------

Fortitudo Technologies offers novel investment software as well as quantitative
and digitalization consultancy to the investment management industry. For more
information, please visit our `website <https://fortitudo.tech>`_.

Installation Instructions
-------------------------

Installation can be done via pip::

   pip install fortitudo.tech

For best performance, we recommend that you install the package in a `conda environment
<https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html>`_
and let conda handle the installation of dependencies before installing the
package using pip. You can do this by following these steps::

   conda create -n fortitudo.tech -c conda-forge python scipy pandas matplotlib cvxopt
   conda activate fortitudo.tech
   pip install fortitudo.tech

The examples might require you to install additional packages, e.g., seaborn and
ipykernel / notebook / jupyterlab if you want to run the notebooks. Using pip to
install these packages should not cause any dependency issues.

You can also explore the examples in the cloud without any local installations using
`Binder <https://mybinder.org/v2/gh/fortitudo-tech/fortitudo.tech/main?labpath=examples>`_.
However, note that Binder servers have very limited resources and might not support
some of the optimized routines this package uses. If you want access to a stable
and optimized environment with persistent storage, please subscribe to our Data
Science Server.

Disclaimer
----------

This package is completely separate from our proprietary solutions and therefore
not representative of the quality and functionality offered by the Investment Simulation
and Investment Analysis modules. If you are an institutional investor and want to
experience how these methods can be used for sophisticated analysis in practice,
please request a demo by sending an email to demo@fortitudo.tech.

            

Raw data

            {
    "_id": null,
    "home_page": "https://fortitudo.tech",
    "name": "fortitudo-tech",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.14,>=3.9",
    "maintainer_email": null,
    "keywords": "CVaR, Efficient Frontier, Entropy Pooling, Quantitative Finance, Portfolio Optimization",
    "author": "Fortitudo Technologies",
    "author_email": "software@fortitudo.tech",
    "download_url": "https://files.pythonhosted.org/packages/64/49/84e4a4651b0dbf79eedb7adb543df5d6808480112b3c632d559e7fb568ee/fortitudo_tech-1.1.4.tar.gz",
    "platform": null,
    "description": "|Pytest| |Codecov| |Binder|\n\n.. |Pytest| image:: https://github.com/fortitudo-tech/fortitudo.tech/actions/workflows/tests.yml/badge.svg\n   :target: https://github.com/fortitudo-tech/fortitudo.tech/actions/workflows/tests.yml\n\n.. |Codecov| image:: https://codecov.io/gh/fortitudo-tech/fortitudo.tech/graph/badge.svg?token=Z16XK92Gkl \n   :target: https://codecov.io/gh/fortitudo-tech/fortitudo.tech\n\n.. |Binder| image:: https://mybinder.org/badge_logo.svg\n   :target: https://mybinder.org/v2/gh/fortitudo-tech/fortitudo.tech/main?labpath=examples\n\nFortitudo Technologies Open Source\n==================================\n\nThis package allows you to explore open-source implementations of some of our\nfundamental technologies, e.g., Entropy Pooling and CVaR optimization in Python.\n\nSee this `YouTube playlist <https://www.youtube.com/playlist?list=PLfI2BKNVj_b2rurUsCtc2F8lqtPWqcs2K>`_\nfor a walkthrough of the package's functionality and examples.\n\nFor a high-level introduction to the investment framework, see this `YouTube video <https://youtu.be/4ESigySdGf8>`_\nand `Substack post <https://open.substack.com/pub/antonvorobets/p/entropy-pooling-and-cvar-portfolio-optimization-in-python-ffed736a8347>`_.\n\nFor a mathematical introduction to the investment framework, see these\n`SSRN articles <https://ssrn.com/author=2738420>`_.\n\nFor a pedagogical and deep presentation of the investment framework,\nyou can access the `Portfolio Construction and Risk Management Book <https://igg.me/at/pcrm-book>`_.\n\nAudience\n--------\n\nThe package is intended for advanced users who are comfortable specifying\nportfolio constraints and Entropy Pooling views using matrices and vectors.\nThis gives full flexibility in relation to working with these technologies.\nHence, input checking is intentionally kept to a minimum.\n\nCompany\n-------\n\nFortitudo Technologies offers novel investment software as well as quantitative\nand digitalization consultancy to the investment management industry. For more\ninformation, please visit our `website <https://fortitudo.tech>`_.\n\nInstallation Instructions\n-------------------------\n\nInstallation can be done via pip::\n\n   pip install fortitudo.tech\n\nFor best performance, we recommend that you install the package in a `conda environment\n<https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html>`_\nand let conda handle the installation of dependencies before installing the\npackage using pip. You can do this by following these steps::\n\n   conda create -n fortitudo.tech -c conda-forge python scipy pandas matplotlib cvxopt\n   conda activate fortitudo.tech\n   pip install fortitudo.tech\n\nThe examples might require you to install additional packages, e.g., seaborn and\nipykernel / notebook / jupyterlab if you want to run the notebooks. Using pip to\ninstall these packages should not cause any dependency issues.\n\nYou can also explore the examples in the cloud without any local installations using\n`Binder <https://mybinder.org/v2/gh/fortitudo-tech/fortitudo.tech/main?labpath=examples>`_.\nHowever, note that Binder servers have very limited resources and might not support\nsome of the optimized routines this package uses. If you want access to a stable\nand optimized environment with persistent storage, please subscribe to our Data\nScience Server.\n\nDisclaimer\n----------\n\nThis package is completely separate from our proprietary solutions and therefore\nnot representative of the quality and functionality offered by the Investment Simulation\nand Investment Analysis modules. If you are an institutional investor and want to\nexperience how these methods can be used for sophisticated analysis in practice,\nplease request a demo by sending an email to demo@fortitudo.tech.\n",
    "bugtrack_url": null,
    "license": "GPL-3.0-or-later",
    "summary": "Entropy Pooling views and stress-testing combined with Conditional Value-at-Risk (CVaR) portfolio optimization in Python.",
    "version": "1.1.4",
    "project_urls": {
        "Documentation": "https://os.fortitudo.tech",
        "Homepage": "https://fortitudo.tech",
        "Issues": "https://github.com/fortitudo-tech/fortitudo.tech/issues",
        "Repository": "https://github.com/fortitudo-tech/fortitudo.tech"
    },
    "split_keywords": [
        "cvar",
        " efficient frontier",
        " entropy pooling",
        " quantitative finance",
        " portfolio optimization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d47dba5ef7ca08e73e46db5966f4a2737e23ca31c4f7b129c69d1c9bfb3611f5",
                "md5": "5687b06f0262f5abd8ed7315e3c4fe53",
                "sha256": "c644772507c41d0ba7bf35aca3baea25d5e14f28ae4b4d86193f77d55adffd54"
            },
            "downloads": -1,
            "filename": "fortitudo_tech-1.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5687b06f0262f5abd8ed7315e3c4fe53",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.14,>=3.9",
            "size": 5544090,
            "upload_time": "2024-11-05T20:10:44",
            "upload_time_iso_8601": "2024-11-05T20:10:44.497580Z",
            "url": "https://files.pythonhosted.org/packages/d4/7d/ba5ef7ca08e73e46db5966f4a2737e23ca31c4f7b129c69d1c9bfb3611f5/fortitudo_tech-1.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "644984e4a4651b0dbf79eedb7adb543df5d6808480112b3c632d559e7fb568ee",
                "md5": "b66194db0458043718dbe9cb4ea6ac42",
                "sha256": "f91c83f08a98676456152fcf9b232353d250f34955cf32c5390f21628bc3fcad"
            },
            "downloads": -1,
            "filename": "fortitudo_tech-1.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "b66194db0458043718dbe9cb4ea6ac42",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.14,>=3.9",
            "size": 5437177,
            "upload_time": "2024-11-05T20:10:49",
            "upload_time_iso_8601": "2024-11-05T20:10:49.216159Z",
            "url": "https://files.pythonhosted.org/packages/64/49/84e4a4651b0dbf79eedb7adb543df5d6808480112b3c632d559e7fb568ee/fortitudo_tech-1.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-05 20:10:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fortitudo-tech",
    "github_project": "fortitudo.tech",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fortitudo-tech"
}
        
Elapsed time: 0.40415s