freshspark


Namefreshspark JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryCreate truly fresh local Spark sessions with isolated temp dirs and reliable teardown.
upload_time2025-08-11 15:28:10
maintainerNone
docs_urlNone
authorOdos Matthews
requires_python>=3.8
licenseNone
keywords pyspark spark spark-session spark local spark cleanup
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # freshspark

Create **truly fresh** local Spark sessions with isolated temp dirs and reliable teardown.

- Isolates `spark.sql.warehouse.dir` and (optionally) embedded Derby **metastore** in unique temp dirs
- Defaults to **in-memory catalog** (no Derby) to avoid classic local locks
- Randomizes Spark UI port to avoid collisions and prints the UI URL
- Aggressively shuts down Py4J so the JVM actually exits
- Simple API: context manager, `(spark, cleanup)` pair, decorator, and a tiny CLI

## Install
```bash
pip install freshspark
```

## Quick start
```python
from freshspark import fresh_local_spark, get_fresh_local_spark

# Context manager (fresh per `with`)
with fresh_local_spark(app_name="etl", preset="dev") as spark:
    spark.range(10).show()

# Manual lifecycle
spark, cleanup = get_fresh_local_spark(app_name="demo", preset="fat")
try:
    spark.range(1000).summary().show()
finally:
    cleanup()
```

## Friendly features

- **Presets**: `preset="tiny" | "dev" | "fat"` set sane memory defaults.
- **No Hive by default**: in-memory catalog avoids Derby locks. Enable with `hive_metastore=True` if you need it.
- **Clean UI**: UI port auto-randomized; prints the URL once up.
- **Optional reuse (same process)**: `reuse_within_process=True` to keep one isolated session for repeated calls.
- **Decorator**: run any function inside a fresh session:

```python
from freshspark import ensure_fresh

@ensure_fresh(preset="dev")
def job(input_path: str, *, spark):
    return spark.read.csv(input_path, header=True).count()

print(job("data.csv"))
```

## CLI

```bash
# Open a REPL with `spark` ready:
freshspark repl --preset fat

# Stop any sticky active session in this process:
freshspark reset
```

## Jupyter tip

To be extra safe in notebooks:

```python
from freshspark import get_fresh_local_spark

spark, cleanup = get_fresh_local_spark(app_name="nb", preset="dev")
# ... work ...
# On finish (or in a finally cell):
cleanup()
```

## Why?
Local PySpark sessions can "stick"—leaving JVMs, metastore locks, or port clashes behind.
**freshspark** guarantees a clean slate every run.

## License
Apache 2.0

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "freshspark",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "pyspark, spark, spark-session, spark local, spark cleanup",
    "author": "Odos Matthews",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/e9/53/71bd7db40ddb5b2084a7d1c587f8d36b86d59f431da19ffdc9a2eabcde68/freshspark-0.1.0.tar.gz",
    "platform": null,
    "description": "# freshspark\n\nCreate **truly fresh** local Spark sessions with isolated temp dirs and reliable teardown.\n\n- Isolates `spark.sql.warehouse.dir` and (optionally) embedded Derby **metastore** in unique temp dirs\n- Defaults to **in-memory catalog** (no Derby) to avoid classic local locks\n- Randomizes Spark UI port to avoid collisions and prints the UI URL\n- Aggressively shuts down Py4J so the JVM actually exits\n- Simple API: context manager, `(spark, cleanup)` pair, decorator, and a tiny CLI\n\n## Install\n```bash\npip install freshspark\n```\n\n## Quick start\n```python\nfrom freshspark import fresh_local_spark, get_fresh_local_spark\n\n# Context manager (fresh per `with`)\nwith fresh_local_spark(app_name=\"etl\", preset=\"dev\") as spark:\n    spark.range(10).show()\n\n# Manual lifecycle\nspark, cleanup = get_fresh_local_spark(app_name=\"demo\", preset=\"fat\")\ntry:\n    spark.range(1000).summary().show()\nfinally:\n    cleanup()\n```\n\n## Friendly features\n\n- **Presets**: `preset=\"tiny\" | \"dev\" | \"fat\"` set sane memory defaults.\n- **No Hive by default**: in-memory catalog avoids Derby locks. Enable with `hive_metastore=True` if you need it.\n- **Clean UI**: UI port auto-randomized; prints the URL once up.\n- **Optional reuse (same process)**: `reuse_within_process=True` to keep one isolated session for repeated calls.\n- **Decorator**: run any function inside a fresh session:\n\n```python\nfrom freshspark import ensure_fresh\n\n@ensure_fresh(preset=\"dev\")\ndef job(input_path: str, *, spark):\n    return spark.read.csv(input_path, header=True).count()\n\nprint(job(\"data.csv\"))\n```\n\n## CLI\n\n```bash\n# Open a REPL with `spark` ready:\nfreshspark repl --preset fat\n\n# Stop any sticky active session in this process:\nfreshspark reset\n```\n\n## Jupyter tip\n\nTo be extra safe in notebooks:\n\n```python\nfrom freshspark import get_fresh_local_spark\n\nspark, cleanup = get_fresh_local_spark(app_name=\"nb\", preset=\"dev\")\n# ... work ...\n# On finish (or in a finally cell):\ncleanup()\n```\n\n## Why?\nLocal PySpark sessions can \"stick\"\u2014leaving JVMs, metastore locks, or port clashes behind.\n**freshspark** guarantees a clean slate every run.\n\n## License\nApache 2.0\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Create truly fresh local Spark sessions with isolated temp dirs and reliable teardown.",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/eddiethedean/freshspark",
        "Issues": "https://github.com/eddiethedean/freshspark/issues"
    },
    "split_keywords": [
        "pyspark",
        " spark",
        " spark-session",
        " spark local",
        " spark cleanup"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5fe6e3b8d4e5c368e3ce9e544e3fa87251c774250702b0d1b21980748bfe9b3c",
                "md5": "e10e650e984df6d3d7383afd26816d64",
                "sha256": "edd2ca59420d7a07e793495d7165f17f0997a06a8da21c04a649c0ef3651ff7b"
            },
            "downloads": -1,
            "filename": "freshspark-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e10e650e984df6d3d7383afd26816d64",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 8554,
            "upload_time": "2025-08-11T15:28:09",
            "upload_time_iso_8601": "2025-08-11T15:28:09.252329Z",
            "url": "https://files.pythonhosted.org/packages/5f/e6/e3b8d4e5c368e3ce9e544e3fa87251c774250702b0d1b21980748bfe9b3c/freshspark-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e95371bd7db40ddb5b2084a7d1c587f8d36b86d59f431da19ffdc9a2eabcde68",
                "md5": "5bda8bc5a18f82869f6639f41ae1ac94",
                "sha256": "e8ac23ac820c2d2e85c6f7a41a672d5bfacd9a1978fac22d2cca84d2a8d5f52d"
            },
            "downloads": -1,
            "filename": "freshspark-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5bda8bc5a18f82869f6639f41ae1ac94",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 10170,
            "upload_time": "2025-08-11T15:28:10",
            "upload_time_iso_8601": "2025-08-11T15:28:10.247998Z",
            "url": "https://files.pythonhosted.org/packages/e9/53/71bd7db40ddb5b2084a7d1c587f8d36b86d59f431da19ffdc9a2eabcde68/freshspark-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-11 15:28:10",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "eddiethedean",
    "github_project": "freshspark",
    "github_not_found": true,
    "lcname": "freshspark"
}
        
Elapsed time: 1.02254s