.. figure:: https://github.com/brainets/frites/blob/master/docs/source/_static/logo_desc.png
:align: center
Frites
======
.. image:: https://github.com/brainets/frites/actions/workflows/test_doc.yml/badge.svg
:target: https://github.com/brainets/frites/actions/workflows/test_doc.yml
.. image:: https://github.com/brainets/frites/actions/workflows/flake.yml/badge.svg
:target: https://github.com/brainets/frites/actions/workflows/flake.yml
.. image:: https://travis-ci.org/brainets/frites.svg?branch=master
:target: https://travis-ci.org/brainets/frites
.. image:: https://codecov.io/gh/brainets/frites/branch/master/graph/badge.svg
:target: https://codecov.io/gh/brainets/frites
.. image:: https://badge.fury.io/py/frites.svg
:target: https://badge.fury.io/py/frites
.. image:: https://pepy.tech/badge/frites
:target: https://pepy.tech/project/frites
.. image:: https://zenodo.org/badge/213869364.svg
:target: https://zenodo.org/badge/latestdoi/213869364
.. image:: https://joss.theoj.org/papers/437a7362501b2ea984e1d4fed4646076/status.svg
:target: https://joss.theoj.org/papers/437a7362501b2ea984e1d4fed4646076
.. _Documentation: https://brainets.github.io/frites/
.. |Documentation| replace:: **Documentation**
.. _Installation: https://brainets.github.io/frites/install.html
.. |Installation| replace:: **Installation**
.. _Usage: https://brainets.github.io/frites/auto_examples/index.html
.. |Usage| replace:: **Usage example**
.. _API: https://brainets.github.io/frites/api/index.html
.. |API| replace:: **List of functions**
.. _Cite: https://brainets.github.io/frites/overview/ovw_cite.html
.. |Cite| replace:: **Cite Frites**
|Documentation|_ | |Installation|_ | |Usage|_ | |API|_ | |Cite|_
Description
===========
`Frites <https://brainets.github.io/frites/>`_ is a Python toolbox for assessing information-theorical measures on human and animal neurophysiological data (M/EEG, Intracranial). The aim of Frites is to extract task-related cognitive brain networks (i.e modulated by the task). The toolbox also includes directed and undirected connectivity metrics such as group-level statistics. Frites documentation is available online at https://brainets.github.io/frites/
.. figure:: https://github.com/brainets/frites/blob/master/docs/source/_static/network_framework.png
:align: center
Installation
============
Run the following command into your terminal to get the latest stable version :
.. code-block:: shell
pip install -U frites
You can also install the latest version of the software directly from Github :
.. code-block:: shell
pip install git+https://github.com/brainets/frites.git
For developers, you can install it in develop mode with the following commands :
.. code-block:: shell
git clone https://github.com/brainets/frites.git
cd frites
python setup.py develop
# or : pip install -e .
Dependencies
++++++++++++
The main dependencies of Frites are :
* `Numpy <https://numpy.org/>`_
* `Scipy <https://www.scipy.org/>`_
* `MNE Python <https://mne.tools/stable/index.html>`_
* `Xarray <http://xarray.pydata.org/en/stable/>`_
* `Joblib <https://joblib.readthedocs.io/en/latest/>`_
In addition to the main dependencies, here's the list of additional packages that you might need :
* `Numba <http://numba.pydata.org/>`_ : speed up the computations of some functions
* `Dcor <https://dcor.readthedocs.io/en/latest/>`_ for fast implementation of distance correlation
* `Matplotlib <https://matplotlib.org/>`_, `Seaborn <https://seaborn.pydata.org/>`_ and `Networkx <https://networkx.github.io/>`_ for plotting the examples
* Some example are using `scikit learn <https://scikit-learn.org/stable/index.html>`_ estimators
Acknowledgments
===============
See `acknowledgments <https://brainets.github.io/frites/overview/ovw_acknowledgments.html>`_
Raw data
{
"_id": null,
"home_page": "https://github.com/brainets/frites",
"name": "frites",
"maintainer": "Etienne Combrisson",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "information-theory statistics",
"author": "BraiNets",
"author_email": "e.combrisson@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/94/dd/3a7c098fcdbf9a23a58dfe388dbf1ed96ea87b650ce0fa061770e060fb0f/frites-0.4.4.tar.gz",
"platform": "any",
"description": ".. figure:: https://github.com/brainets/frites/blob/master/docs/source/_static/logo_desc.png\n :align: center\n\n\nFrites\n======\n\n.. image:: https://github.com/brainets/frites/actions/workflows/test_doc.yml/badge.svg\n :target: https://github.com/brainets/frites/actions/workflows/test_doc.yml\n\n.. image:: https://github.com/brainets/frites/actions/workflows/flake.yml/badge.svg\n :target: https://github.com/brainets/frites/actions/workflows/flake.yml\n\n.. image:: https://travis-ci.org/brainets/frites.svg?branch=master\n :target: https://travis-ci.org/brainets/frites\n\n.. image:: https://codecov.io/gh/brainets/frites/branch/master/graph/badge.svg\n :target: https://codecov.io/gh/brainets/frites\n\n.. image:: https://badge.fury.io/py/frites.svg\n :target: https://badge.fury.io/py/frites\n\n.. image:: https://pepy.tech/badge/frites\n :target: https://pepy.tech/project/frites\n\n.. image:: https://zenodo.org/badge/213869364.svg\n :target: https://zenodo.org/badge/latestdoi/213869364\n\n.. image:: https://joss.theoj.org/papers/437a7362501b2ea984e1d4fed4646076/status.svg\n :target: https://joss.theoj.org/papers/437a7362501b2ea984e1d4fed4646076\n\n\n.. _Documentation: https://brainets.github.io/frites/\n.. |Documentation| replace:: **Documentation**\n\n.. _Installation: https://brainets.github.io/frites/install.html\n.. |Installation| replace:: **Installation**\n\n.. _Usage: https://brainets.github.io/frites/auto_examples/index.html\n.. |Usage| replace:: **Usage example**\n\n.. _API: https://brainets.github.io/frites/api/index.html\n.. |API| replace:: **List of functions**\n\n.. _Cite: https://brainets.github.io/frites/overview/ovw_cite.html\n.. |Cite| replace:: **Cite Frites**\n\n|Documentation|_ | |Installation|_ | |Usage|_ | |API|_ | |Cite|_\n\n\nDescription\n===========\n\n`Frites <https://brainets.github.io/frites/>`_ is a Python toolbox for assessing information-theorical measures on human and animal neurophysiological data (M/EEG, Intracranial). The aim of Frites is to extract task-related cognitive brain networks (i.e modulated by the task). The toolbox also includes directed and undirected connectivity metrics such as group-level statistics. Frites documentation is available online at https://brainets.github.io/frites/\n\n.. figure:: https://github.com/brainets/frites/blob/master/docs/source/_static/network_framework.png\n :align: center\n\n\nInstallation\n============\n\nRun the following command into your terminal to get the latest stable version :\n\n.. code-block:: shell\n\n pip install -U frites\n\n\nYou can also install the latest version of the software directly from Github :\n\n.. code-block:: shell\n\n pip install git+https://github.com/brainets/frites.git\n\n\nFor developers, you can install it in develop mode with the following commands :\n\n.. code-block:: shell\n\n git clone https://github.com/brainets/frites.git\n cd frites\n python setup.py develop\n # or : pip install -e .\n\nDependencies\n++++++++++++\n\nThe main dependencies of Frites are :\n\n* `Numpy <https://numpy.org/>`_\n* `Scipy <https://www.scipy.org/>`_\n* `MNE Python <https://mne.tools/stable/index.html>`_\n* `Xarray <http://xarray.pydata.org/en/stable/>`_\n* `Joblib <https://joblib.readthedocs.io/en/latest/>`_\n\nIn addition to the main dependencies, here's the list of additional packages that you might need :\n\n* `Numba <http://numba.pydata.org/>`_ : speed up the computations of some functions\n* `Dcor <https://dcor.readthedocs.io/en/latest/>`_ for fast implementation of distance correlation\n* `Matplotlib <https://matplotlib.org/>`_, `Seaborn <https://seaborn.pydata.org/>`_ and `Networkx <https://networkx.github.io/>`_ for plotting the examples\n* Some example are using `scikit learn <https://scikit-learn.org/stable/index.html>`_ estimators\n\nAcknowledgments\n===============\n\nSee `acknowledgments <https://brainets.github.io/frites/overview/ovw_acknowledgments.html>`_\n",
"bugtrack_url": null,
"license": "BSD 3-Clause License",
"summary": "Framework of Information Theory for Electrophysiological data and Statistics",
"version": "0.4.4",
"project_urls": {
"Download": "https://github.com/brainets/frites/archive/v0.4.4.tar.gz",
"Homepage": "https://github.com/brainets/frites"
},
"split_keywords": [
"information-theory",
"statistics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b65e6e99a4d31160ad02eb3409329e87d403bdf2ddf974f78b89d9d02d1b054a",
"md5": "7ba019011fdbc0496506780eaf3889a8",
"sha256": "609d046afe45a7ebed444915d4f221bbb20c37791c0c938da09f068a25198cd1"
},
"downloads": -1,
"filename": "frites-0.4.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7ba019011fdbc0496506780eaf3889a8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 148648,
"upload_time": "2023-07-07T08:18:20",
"upload_time_iso_8601": "2023-07-07T08:18:20.360080Z",
"url": "https://files.pythonhosted.org/packages/b6/5e/6e99a4d31160ad02eb3409329e87d403bdf2ddf974f78b89d9d02d1b054a/frites-0.4.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "94dd3a7c098fcdbf9a23a58dfe388dbf1ed96ea87b650ce0fa061770e060fb0f",
"md5": "62f8d4b21dc7b2dcea62645fe2b2355a",
"sha256": "280ca9f3f711da0550eceec8ce94108b891369b63ea3cc1b8c960825ed20fb3f"
},
"downloads": -1,
"filename": "frites-0.4.4.tar.gz",
"has_sig": false,
"md5_digest": "62f8d4b21dc7b2dcea62645fe2b2355a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 112486,
"upload_time": "2023-07-07T08:18:22",
"upload_time_iso_8601": "2023-07-07T08:18:22.290024Z",
"url": "https://files.pythonhosted.org/packages/94/dd/3a7c098fcdbf9a23a58dfe388dbf1ed96ea87b650ce0fa061770e060fb0f/frites-0.4.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-07 08:18:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "brainets",
"github_project": "frites",
"travis_ci": true,
"coveralls": true,
"github_actions": true,
"requirements": [],
"lcname": "frites"
}