frosty-dag


Namefrosty-dag JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/joshuaybang/frosty-dag
SummaryImplementation of the FROSTY algorithm
upload_time2023-06-16 01:52:23
maintainer
docs_urlNone
authorJoshua Bang
requires_python>=3.6, <3.10
license
keywords bayesian network structure learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FROSTY

Python Package for the FROSTY algorithm by Joshua Bang and Sang-Yun Oh

Bang, J., Oh, S.-Y. (2023). FROSTY: A High-Dimensional Scale-Free Bayesian Network Learning Method. Journal of Data Science. \[[JDS](https://jds-online.org/journal/JDS/article/1329/info)\]

## Installation

Installation of `scikit-sparse` depends on `suite-sparse` library, which can be installed via:
```bash
# mac
brew install suite-sparse

# debian
sudo apt-get install libsuitesparse-dev
```

Then install FROSTY from PyPI:
```bash
pip install frosty-dag
```

## Example (scale-free graph, p=50, n=1000)

 - True and estimated graphs

![estimation](https://github.com/joshuaybang/frosty/raw/main/examples/images/frosty-estimation.png)

 - Confusion matrix

![confusion matrix](https://github.com/joshuaybang/frosty/raw/main/examples/images/confusion-matrix.png)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/joshuaybang/frosty-dag",
    "name": "frosty-dag",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6, <3.10",
    "maintainer_email": "",
    "keywords": "bayesian network structure learning",
    "author": "Joshua Bang",
    "author_email": "joshuaybang@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/97/f1/0f2505a241363d56a16fc4082103a81cc4e058e7885367933229d0bdf969/frosty-dag-0.0.2.tar.gz",
    "platform": null,
    "description": "# FROSTY\n\nPython Package for the FROSTY algorithm by Joshua Bang and Sang-Yun Oh\n\nBang, J., Oh, S.-Y. (2023). FROSTY: A High-Dimensional Scale-Free Bayesian Network Learning Method. Journal of Data Science. \\[[JDS](https://jds-online.org/journal/JDS/article/1329/info)\\]\n\n## Installation\n\nInstallation of `scikit-sparse` depends on `suite-sparse` library, which can be installed via:\n```bash\n# mac\nbrew install suite-sparse\n\n# debian\nsudo apt-get install libsuitesparse-dev\n```\n\nThen install FROSTY from PyPI:\n```bash\npip install frosty-dag\n```\n\n## Example (scale-free graph, p=50, n=1000)\n\n - True and estimated graphs\n\n![estimation](https://github.com/joshuaybang/frosty/raw/main/examples/images/frosty-estimation.png)\n\n - Confusion matrix\n\n![confusion matrix](https://github.com/joshuaybang/frosty/raw/main/examples/images/confusion-matrix.png)\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Implementation of the FROSTY algorithm",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/joshuaybang/frosty-dag"
    },
    "split_keywords": [
        "bayesian",
        "network",
        "structure",
        "learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cb08d44b7d2c5f5b646c16cf261ee780e9a4089006febc1b25089ab705e58f8e",
                "md5": "c8c306006326a5bcaf1f28e81b4da470",
                "sha256": "334f9dec619e70c3588e0d96732fabb501ea0ff5ccd181d2210fb42f58a2b21e"
            },
            "downloads": -1,
            "filename": "frosty_dag-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c8c306006326a5bcaf1f28e81b4da470",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6, <3.10",
            "size": 14965,
            "upload_time": "2023-06-16T01:52:21",
            "upload_time_iso_8601": "2023-06-16T01:52:21.436479Z",
            "url": "https://files.pythonhosted.org/packages/cb/08/d44b7d2c5f5b646c16cf261ee780e9a4089006febc1b25089ab705e58f8e/frosty_dag-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "97f10f2505a241363d56a16fc4082103a81cc4e058e7885367933229d0bdf969",
                "md5": "eae634df17759170075a1a84fa3ae161",
                "sha256": "04bc340064deaba45061c264602b0745ac8634324d5e32f49f79279f285997fa"
            },
            "downloads": -1,
            "filename": "frosty-dag-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "eae634df17759170075a1a84fa3ae161",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6, <3.10",
            "size": 14749,
            "upload_time": "2023-06-16T01:52:23",
            "upload_time_iso_8601": "2023-06-16T01:52:23.026460Z",
            "url": "https://files.pythonhosted.org/packages/97/f1/0f2505a241363d56a16fc4082103a81cc4e058e7885367933229d0bdf969/frosty-dag-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-16 01:52:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "joshuaybang",
    "github_project": "frosty-dag",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "frosty-dag"
}
        
Elapsed time: 0.11070s