fslpy


Namefslpy JSON
Version 3.21.1 PyPI version JSON
download
home_pageNone
SummaryFSL Python library
upload_time2024-09-27 17:39:55
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseApache License Version 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            fslpy
=====

.. image:: https://img.shields.io/pypi/v/fslpy.svg
   :target: https://pypi.python.org/pypi/fslpy/

.. image:: https://anaconda.org/conda-forge/fslpy/badges/version.svg
   :target: https://anaconda.org/conda-forge/fslpy

.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.1470750.svg
   :target: https://doi.org/10.5281/zenodo.1470750

.. image:: https://git.fmrib.ox.ac.uk/fsl/fslpy/badges/master/coverage.svg
   :target: https://git.fmrib.ox.ac.uk/fsl/fslpy/commits/master/


The ``fslpy`` project is a `FSL <http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/>`_
programming library written in Python. It is used by `FSLeyes
<https://git.fmrib.ox.ac.uk/fsl/fsleyes/fsleyes/>`_.


``fslpy`` is tested against Python versions 3.8, 3.9, 3.10, and 3.11.


Installation
------------


Install ``fslpy`` and its core dependencies via pip::

    pip install fslpy


``fslpy`` is also available on `conda-forge <https://conda-forge.org/>`_::

    conda install -c conda-forge fslpy


Dependencies
------------


All of the core dependencies of ``fslpy`` are listed in the
`pyproject.toml <pyproject.toml>`_ file.

Some optional dependencies (labelled ``extra`` in ``pyproject.toml``) provide
addditional functionality:

- ``wxPython``: The `fsl.utils.idle <fsl/utils/idle.py>`_ module has
  functionality  to schedule functions on the ``wx`` idle loop.

- ``indexed_gzip``: The `fsl.data.image.Image <fsl/data/image.py>`_ class
  can use ``indexed_gzip`` to keep large compressed images on disk instead
  of decompressing and loading them into memory..

- ``trimesh``/``rtree``: The `fsl.data.mesh.TriangleMesh <fsl/data/mesh.py>`_
  class has some methods which use ``trimesh`` to perform geometric queries
  on the mesh.

- ``Pillow``: The `fsl.data.bitmap.Bitmap <fsl/data/bitmap.py>`_ class uses
  ``Pillow`` to load image files.


If you are using Linux, you need to install wxPython first, as binaries are
not available on PyPI. Install wxPython like so, changing the URL for your
specific platform::

    pip install -f https://extras.wxpython.org/wxPython4/extras/linux/gtk2/ubuntu-16.04/ wxpython


Once wxPython has been installed, you can type the following to install the
remaining optional dependencies::

    pip install "fslpy[extra]"


Dependencies for testing and documentation are also listed in ``pyproject.toml``,
and are respectively labelled as ``test`` and ``doc``.


Non-Python dependencies
^^^^^^^^^^^^^^^^^^^^^^^


The `fsl.data.dicom <fsl/data/dicom.py>`_ module requires the presence of
Chris Rorden's `dcm2niix <https://github.com/rordenlab/dcm2niix>`_ program.


The ``rtree`` library assumes that ``libspatialindex`` is installed on
your system.


The `fsl.transform.x5 <fsl/transform/x5.py>`_ module uses `h5py
<https://www.h5py.org/>`_, which requires ``libhdf5``.


Documentation
-------------

API documentation for ``fslpy`` is hosted at
https://open.win.ox.ac.uk/pages/fsl/fslpy/.

``fslpy`` is documented using `sphinx <http://http://sphinx-doc.org/>`_. You
can build the API documentation by running::

    pip install ".[doc]"
    sphinx-build doc html

The HTML documentation will be generated and saved in the ``html/``
directory.


Tests
-----

Run the test suite via::

    pip install ".[test]"
    pytest


Some tests will only pass if the test environment meets certain criteria -
refer to the ``tool.pytest.init_options`` section of
[``pyproject.toml``](pyproject.toml) for a list of [pytest
marks](https://docs.pytest.org/en/7.1.x/example/markers.html) which can be
selectively enabled or disabled.


Contributing
------------


If you are interested in contributing to ``fslpy``, check out the
`contributing guide <doc/contributing.rst>`_.


Credits
-------


The `fsl.data.dicom <fsl/data/dicom.py>`_ module is little more than a thin
wrapper around Chris Rorden's `dcm2niix
<https://github.com/rordenlab/dcm2niix>`_ program.


The `example.mgz <tests/testdata/example.mgz>`_ file, used for testing,
originates from the ``nibabel`` test data set.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "fslpy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Paul McCarthy <pauldmccarthy@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/5a/c9/6957cdb0561182f246e56808772a405007f43cb4105e371dc1826312b440/fslpy-3.21.1.tar.gz",
    "platform": null,
    "description": "fslpy\n=====\n\n.. image:: https://img.shields.io/pypi/v/fslpy.svg\n   :target: https://pypi.python.org/pypi/fslpy/\n\n.. image:: https://anaconda.org/conda-forge/fslpy/badges/version.svg\n   :target: https://anaconda.org/conda-forge/fslpy\n\n.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.1470750.svg\n   :target: https://doi.org/10.5281/zenodo.1470750\n\n.. image:: https://git.fmrib.ox.ac.uk/fsl/fslpy/badges/master/coverage.svg\n   :target: https://git.fmrib.ox.ac.uk/fsl/fslpy/commits/master/\n\n\nThe ``fslpy`` project is a `FSL <http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/>`_\nprogramming library written in Python. It is used by `FSLeyes\n<https://git.fmrib.ox.ac.uk/fsl/fsleyes/fsleyes/>`_.\n\n\n``fslpy`` is tested against Python versions 3.8, 3.9, 3.10, and 3.11.\n\n\nInstallation\n------------\n\n\nInstall ``fslpy`` and its core dependencies via pip::\n\n    pip install fslpy\n\n\n``fslpy`` is also available on `conda-forge <https://conda-forge.org/>`_::\n\n    conda install -c conda-forge fslpy\n\n\nDependencies\n------------\n\n\nAll of the core dependencies of ``fslpy`` are listed in the\n`pyproject.toml <pyproject.toml>`_ file.\n\nSome optional dependencies (labelled ``extra`` in ``pyproject.toml``) provide\naddditional functionality:\n\n- ``wxPython``: The `fsl.utils.idle <fsl/utils/idle.py>`_ module has\n  functionality  to schedule functions on the ``wx`` idle loop.\n\n- ``indexed_gzip``: The `fsl.data.image.Image <fsl/data/image.py>`_ class\n  can use ``indexed_gzip`` to keep large compressed images on disk instead\n  of decompressing and loading them into memory..\n\n- ``trimesh``/``rtree``: The `fsl.data.mesh.TriangleMesh <fsl/data/mesh.py>`_\n  class has some methods which use ``trimesh`` to perform geometric queries\n  on the mesh.\n\n- ``Pillow``: The `fsl.data.bitmap.Bitmap <fsl/data/bitmap.py>`_ class uses\n  ``Pillow`` to load image files.\n\n\nIf you are using Linux, you need to install wxPython first, as binaries are\nnot available on PyPI. Install wxPython like so, changing the URL for your\nspecific platform::\n\n    pip install -f https://extras.wxpython.org/wxPython4/extras/linux/gtk2/ubuntu-16.04/ wxpython\n\n\nOnce wxPython has been installed, you can type the following to install the\nremaining optional dependencies::\n\n    pip install \"fslpy[extra]\"\n\n\nDependencies for testing and documentation are also listed in ``pyproject.toml``,\nand are respectively labelled as ``test`` and ``doc``.\n\n\nNon-Python dependencies\n^^^^^^^^^^^^^^^^^^^^^^^\n\n\nThe `fsl.data.dicom <fsl/data/dicom.py>`_ module requires the presence of\nChris Rorden's `dcm2niix <https://github.com/rordenlab/dcm2niix>`_ program.\n\n\nThe ``rtree`` library assumes that ``libspatialindex`` is installed on\nyour system.\n\n\nThe `fsl.transform.x5 <fsl/transform/x5.py>`_ module uses `h5py\n<https://www.h5py.org/>`_, which requires ``libhdf5``.\n\n\nDocumentation\n-------------\n\nAPI documentation for ``fslpy`` is hosted at\nhttps://open.win.ox.ac.uk/pages/fsl/fslpy/.\n\n``fslpy`` is documented using `sphinx <http://http://sphinx-doc.org/>`_. You\ncan build the API documentation by running::\n\n    pip install \".[doc]\"\n    sphinx-build doc html\n\nThe HTML documentation will be generated and saved in the ``html/``\ndirectory.\n\n\nTests\n-----\n\nRun the test suite via::\n\n    pip install \".[test]\"\n    pytest\n\n\nSome tests will only pass if the test environment meets certain criteria -\nrefer to the ``tool.pytest.init_options`` section of\n[``pyproject.toml``](pyproject.toml) for a list of [pytest\nmarks](https://docs.pytest.org/en/7.1.x/example/markers.html) which can be\nselectively enabled or disabled.\n\n\nContributing\n------------\n\n\nIf you are interested in contributing to ``fslpy``, check out the\n`contributing guide <doc/contributing.rst>`_.\n\n\nCredits\n-------\n\n\nThe `fsl.data.dicom <fsl/data/dicom.py>`_ module is little more than a thin\nwrapper around Chris Rorden's `dcm2niix\n<https://github.com/rordenlab/dcm2niix>`_ program.\n\n\nThe `example.mgz <tests/testdata/example.mgz>`_ file, used for testing,\noriginates from the ``nibabel`` test data set.\n",
    "bugtrack_url": null,
    "license": "Apache License Version 2.0",
    "summary": "FSL Python library",
    "version": "3.21.1",
    "project_urls": {
        "Documentation": "https://open.win.ox.ac.uk/pages/fsl/fslpy/",
        "Repository": "https://git.fmrib.ox.ac.uk/fsl/fslpy/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "666afc716c71f0285accfacd782a08c1f2126d94799edc36d1284b3add1e7fdf",
                "md5": "83a133664691ed7779a8d8948ec4c6e7",
                "sha256": "0daebf1cd9182a2547830d54cd5552311617dfd630624c1d4befc63e2b349201"
            },
            "downloads": -1,
            "filename": "fslpy-3.21.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "83a133664691ed7779a8d8948ec4c6e7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 4789082,
            "upload_time": "2024-09-27T17:39:48",
            "upload_time_iso_8601": "2024-09-27T17:39:48.311991Z",
            "url": "https://files.pythonhosted.org/packages/66/6a/fc716c71f0285accfacd782a08c1f2126d94799edc36d1284b3add1e7fdf/fslpy-3.21.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5ac96957cdb0561182f246e56808772a405007f43cb4105e371dc1826312b440",
                "md5": "cb306db5f039233a8fdd1a6fcf03a13d",
                "sha256": "c23c965d133a4bc1a254c30b52e9da84316bdfc4d366aacb785eb129c7c12762"
            },
            "downloads": -1,
            "filename": "fslpy-3.21.1.tar.gz",
            "has_sig": false,
            "md5_digest": "cb306db5f039233a8fdd1a6fcf03a13d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 4793638,
            "upload_time": "2024-09-27T17:39:55",
            "upload_time_iso_8601": "2024-09-27T17:39:55.582046Z",
            "url": "https://files.pythonhosted.org/packages/5a/c9/6957cdb0561182f246e56808772a405007f43cb4105e371dc1826312b440/fslpy-3.21.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-27 17:39:55",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "fslpy"
}
        
Elapsed time: 0.31988s