fullmonte


Namefullmonte JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/8W9aG/fullmonte
SummaryA monte carlo simulation for extrapolated returns.
upload_time2024-06-04 05:57:42
maintainerNone
docs_urlNone
authorWill Sackfield
requires_pythonNone
licenseMIT
keywords monte carlo
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # fullmonte

<a href="https://pypi.org/project/fullmonte/">
    <img alt="PyPi" src="https://img.shields.io/pypi/v/fullmonte">
</a>

Monte Carlo simulations for extrapolated returns.

## Dependencies :globe_with_meridians:

Python 3.11.6:

- [numpy 1.25.2](https://numpy.org/)
- [pandas 2.0.3](https://pandas.pydata.org/)
- [matplotlib 3.8.3](https://matplotlib.org/)

## Raison D'ĂȘtre :thought_balloon:

fullmonte is a python library that implements the simulation and plotting of a monte carlo run on a financial return assuming normal distributions.

## Installation :inbox_tray:

This is a python package hosted on pypi, so to install simply run the following command:

`pip install fullmonte`

## Usage example :eyes:

A quick example of how to use this library is the following:

```python
from fullmonte import simulate, plot

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Create some test data with a $100,000 initial investment
pct_ret = np.random.uniform(-0.1, 0.1, 252 * 10)
ret = np.concatenate((np.array([100000.0]), pct_ret + 1.0)).cumprod()
# Simulate monte carlo
df = simulate(pd.Series(ret))
print(df)
# Plot the monte carlo simulations
plot(df)
plt.show()
```

This will produce the following:

![Monte Carlo](mc.png "Monte Carlo")

## License :memo:

The project is available under the [MIT License](LICENSE).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/8W9aG/fullmonte",
    "name": "fullmonte",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "monte carlo",
    "author": "Will Sackfield",
    "author_email": "will.sackfield@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/cc/fb/3a74eb5cd8cfda094d2463d6a46276e40c6c39ee3b44b9d17add6f2b255c/fullmonte-0.0.4.tar.gz",
    "platform": null,
    "description": "# fullmonte\n\n<a href=\"https://pypi.org/project/fullmonte/\">\n    <img alt=\"PyPi\" src=\"https://img.shields.io/pypi/v/fullmonte\">\n</a>\n\nMonte Carlo simulations for extrapolated returns.\n\n## Dependencies :globe_with_meridians:\n\nPython 3.11.6:\n\n- [numpy 1.25.2](https://numpy.org/)\n- [pandas 2.0.3](https://pandas.pydata.org/)\n- [matplotlib 3.8.3](https://matplotlib.org/)\n\n## Raison D'\u00eatre :thought_balloon:\n\nfullmonte is a python library that implements the simulation and plotting of a monte carlo run on a financial return assuming normal distributions.\n\n## Installation :inbox_tray:\n\nThis is a python package hosted on pypi, so to install simply run the following command:\n\n`pip install fullmonte`\n\n## Usage example :eyes:\n\nA quick example of how to use this library is the following:\n\n```python\nfrom fullmonte import simulate, plot\n\nimport pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# Create some test data with a $100,000 initial investment\npct_ret = np.random.uniform(-0.1, 0.1, 252 * 10)\nret = np.concatenate((np.array([100000.0]), pct_ret + 1.0)).cumprod()\n# Simulate monte carlo\ndf = simulate(pd.Series(ret))\nprint(df)\n# Plot the monte carlo simulations\nplot(df)\nplt.show()\n```\n\nThis will produce the following:\n\n![Monte Carlo](mc.png \"Monte Carlo\")\n\n## License :memo:\n\nThe project is available under the [MIT License](LICENSE).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A monte carlo simulation for extrapolated returns.",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://github.com/8W9aG/fullmonte"
    },
    "split_keywords": [
        "monte",
        "carlo"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ccfb3a74eb5cd8cfda094d2463d6a46276e40c6c39ee3b44b9d17add6f2b255c",
                "md5": "98489ce65857b7927db476c96d4237cc",
                "sha256": "273dd5e9268c3ff413a2b4dc691514c9bd3dd0844f1f06e9ea8cf22b923c0da9"
            },
            "downloads": -1,
            "filename": "fullmonte-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "98489ce65857b7927db476c96d4237cc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3806,
            "upload_time": "2024-06-04T05:57:42",
            "upload_time_iso_8601": "2024-06-04T05:57:42.874729Z",
            "url": "https://files.pythonhosted.org/packages/cc/fb/3a74eb5cd8cfda094d2463d6a46276e40c6c39ee3b44b9d17add6f2b255c/fullmonte-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-04 05:57:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "8W9aG",
    "github_project": "fullmonte",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "fullmonte"
}
        
Elapsed time: 0.25525s