function-schema


Namefunction-schema JSON
Version 0.4.4 PyPI version JSON
download
home_pageNone
SummaryA small utility to generate JSON schemas for python functions.
upload_time2024-09-27 08:06:02
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords json-schema function documentation openai utility
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Function schema

[![CI](https://github.com/comfuture/function-schema/actions/workflows/ci.yml/badge.svg)](https://github.com/comfuture/function-schema/actions/workflows/ci.yml)
[![Release](https://github.com/comfuture/function-schema/actions/workflows/python-publish.yml/badge.svg)](https://github.com/comfuture/function-schema/actions/workflows/python-publish.yml)
[![PyPI version](https://badge.fury.io/py/function-schema.svg)](https://badge.fury.io/py/function-schema)

This is a small utility to generate JSON schemas for python functions.
With power of type annotations, it is possible to generate a schema for a function without describing it twice.

At this moment, extracting schema from a function is useful for [OpenAI Assistant Tool Calling](https://platform.openai.com/docs/assistants/tools/function-calling), [OpenAI API function-call](https://platform.openai.com/docs/guides/function-calling), and [Anthropic Claude Tool calling](https://docs.anthropic.com/claude/docs/tool-use) feature.
And it can be used for other purposes for example to generate documentation in the future.

## Installation

```sh
pip install function-schema
```

## Usage

```python
from typing import Annotated, Optional
from function_schema import Doc
import enum

def get_weather(
    city: Annotated[str, Doc("The city to get the weather for")],
    unit: Annotated[
        Optional[str],
        Doc("The unit to return the temperature in"),
        enum.Enum("Unit", "celcius fahrenheit")
    ] = "celcius",
) -> str:
    """Returns the weather for the given city."""
    return f"Weather for {city} is 20°C"
```

Function description is taken from the docstring.
Type hinting with `typing.Annotated` for annotate additional information about the parameters and return type.

Then you can generate a schema for this function:
```python
import json
from function_schema import get_function_schema

schema = get_function_schema(get_weather)
print(json.dumps(schema, indent=2))
```

Will output:

```json
{
  "name": "get_weather",
  "description": "Returns the weather for the given city.",
  "parameters": {
    "type": "object",
    "properties": {
      "city": {
        "type": "string",
        "description": "The city to get the weather for"
      },
      "unit": {
        "type": "string",
        "description": "The unit to return the temperature in",
        "enum": [
          "celcius",
          "fahrenheit"
        ],
        "default": "celcius"
      }
    },
  }
  "required": [
    "city"
  ]
}
```

for claude, you should pass 2nd argument as SchemaFormat.claude or `claude`:

```python
from function_schema import get_function_schema

schema = get_function_schema(get_weather, "claude")
```

Please refer to the [Claude tool use](https://docs.anthropic.com/claude/docs/tool-use) documentation for more information.

You can use any type hinting supported by python for the first argument of `Annotated`. including:
`typing.Literal`, `typing.Optional`, `typing.Union`, and `T | None` for python 3.10+.  
`Doc` class or plain string in `Annotated` is used for describe the parameter.
`Doc` metadata is the [PEP propose](https://peps.python.org/pep-0727/) for standardizing the metadata in type hints.
currently, implemented in `typing-extensions` module. Also `function_schema.Doc` is provided for compatibility.

Enumeratable candidates can be defined with `enum.Enum` in the argument of `Annotated`.

```python
import enum

class AnimalType(enum.Enum):
    dog = enum.auto()
    cat = enum.auto()

def get_animal(
    animal: Annotated[str, Doc("The animal to get"), AnimalType],
) -> str:
    """Returns the animal."""
    return f"Animal is {animal.value}"
```
In this example, each name of `AnimalType` enums(`dog`, `cat`) is used as an enum schema.
In shorthand, you can use `typing.Literal` as the type will do the same thing.

```python
def get_animal(
    animal: Annotated[Literal["dog", "cat"], Doc("The animal to get")],
) -> str:
    """Returns the animal."""
    return f"Animal is {animal}"
```


### Plain String in Annotated

The string value of `Annotated` is used as a description for convenience.

```python
def get_weather(
    city: Annotated[str, "The city to get the weather for"], # <- string value of Annotated is used as a description
    unit: Annotated[Optional[str], "The unit to return the temperature in"] = "celcius",
) -> str:
    """Returns the weather for the given city."""
    return f"Weather for {city} is 20°C"
```

But this would create a predefined meaning for any plain string inside of `Annotated`,
and any tool that was using plain strings in them for any other purpose, which is currently allowed, would now be invalid.
Please refer to the [PEP 0727, Plain String in Annotated](https://peps.python.org/pep-0727/#plain-string-in-annotated) for more information.

### Usage with OpenAI API

You can use this schema to make a function call in OpenAI API:
```python
import openai
openai.api_key = "sk-..."

# Create an assistant with the function
assistant = client.beta.assistants.create(
    instructions="You are a weather bot. Use the provided functions to answer questions.",
    model="gpt-4-turbo-preview",
    tools=[{
        "type": "function",
        "function": get_function_schema(get_weather),
    }]
)

run = client.beta.messages.create(
    assistant_id=assistant.id,
    messages=[
        {"role": "user", "content": "What's the weather like in Seoul?"}
    ]
)

# or with chat completion

result = openai.chat.completion.create(
    model="gpt-3.5-turbo",
    messages=[
        {"role": "user", "content": "What's the weather like in Seoul?"}
    ],
    tools=[{
      "type": "function",
      "function": get_function_schema(get_weather)
    }],
    tool_call="auto",
)
```

### Usage with Anthropic Claude

```python
import anthropic

client = anthropic.Client()

response = client.beta.tools.messages.create(
    model="claude-3-opus-20240229",
    max_tokens=4096,
    tools=[get_function_schema(get_weather, "claude")],
    messages=[
        {"role": "user", "content": "What's the weather like in Seoul?"}
    ]
)
```

### CLI usage

```sh
function_schema mymodule.py my_function | jq
```

## License
MIT License


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "function-schema",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "Changkyun Kim <comfuture@gmail.com>",
    "keywords": "json-schema, function, documentation, openai, utility",
    "author": null,
    "author_email": "Changkyun Kim <comfuture@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/da/83/33bee8379ffddc40d2974440945c6014947ad5a424a72157b0b4e3491609/function_schema-0.4.4.tar.gz",
    "platform": null,
    "description": "# Function schema\n\n[![CI](https://github.com/comfuture/function-schema/actions/workflows/ci.yml/badge.svg)](https://github.com/comfuture/function-schema/actions/workflows/ci.yml)\n[![Release](https://github.com/comfuture/function-schema/actions/workflows/python-publish.yml/badge.svg)](https://github.com/comfuture/function-schema/actions/workflows/python-publish.yml)\n[![PyPI version](https://badge.fury.io/py/function-schema.svg)](https://badge.fury.io/py/function-schema)\n\nThis is a small utility to generate JSON schemas for python functions.\nWith power of type annotations, it is possible to generate a schema for a function without describing it twice.\n\nAt this moment, extracting schema from a function is useful for [OpenAI Assistant Tool Calling](https://platform.openai.com/docs/assistants/tools/function-calling), [OpenAI API function-call](https://platform.openai.com/docs/guides/function-calling), and [Anthropic Claude Tool calling](https://docs.anthropic.com/claude/docs/tool-use) feature.\nAnd it can be used for other purposes for example to generate documentation in the future.\n\n## Installation\n\n```sh\npip install function-schema\n```\n\n## Usage\n\n```python\nfrom typing import Annotated, Optional\nfrom function_schema import Doc\nimport enum\n\ndef get_weather(\n    city: Annotated[str, Doc(\"The city to get the weather for\")],\n    unit: Annotated[\n        Optional[str],\n        Doc(\"The unit to return the temperature in\"),\n        enum.Enum(\"Unit\", \"celcius fahrenheit\")\n    ] = \"celcius\",\n) -> str:\n    \"\"\"Returns the weather for the given city.\"\"\"\n    return f\"Weather for {city} is 20\u00b0C\"\n```\n\nFunction description is taken from the docstring.\nType hinting with `typing.Annotated` for annotate additional information about the parameters and return type.\n\nThen you can generate a schema for this function:\n```python\nimport json\nfrom function_schema import get_function_schema\n\nschema = get_function_schema(get_weather)\nprint(json.dumps(schema, indent=2))\n```\n\nWill output:\n\n```json\n{\n  \"name\": \"get_weather\",\n  \"description\": \"Returns the weather for the given city.\",\n  \"parameters\": {\n    \"type\": \"object\",\n    \"properties\": {\n      \"city\": {\n        \"type\": \"string\",\n        \"description\": \"The city to get the weather for\"\n      },\n      \"unit\": {\n        \"type\": \"string\",\n        \"description\": \"The unit to return the temperature in\",\n        \"enum\": [\n          \"celcius\",\n          \"fahrenheit\"\n        ],\n        \"default\": \"celcius\"\n      }\n    },\n  }\n  \"required\": [\n    \"city\"\n  ]\n}\n```\n\nfor claude, you should pass 2nd argument as SchemaFormat.claude or `claude`:\n\n```python\nfrom function_schema import get_function_schema\n\nschema = get_function_schema(get_weather, \"claude\")\n```\n\nPlease refer to the [Claude tool use](https://docs.anthropic.com/claude/docs/tool-use) documentation for more information.\n\nYou can use any type hinting supported by python for the first argument of `Annotated`. including:\n`typing.Literal`, `typing.Optional`, `typing.Union`, and `T | None` for python 3.10+.  \n`Doc` class or plain string in `Annotated` is used for describe the parameter.\n`Doc` metadata is the [PEP propose](https://peps.python.org/pep-0727/) for standardizing the metadata in type hints.\ncurrently, implemented in `typing-extensions` module. Also `function_schema.Doc` is provided for compatibility.\n\nEnumeratable candidates can be defined with `enum.Enum` in the argument of `Annotated`.\n\n```python\nimport enum\n\nclass AnimalType(enum.Enum):\n    dog = enum.auto()\n    cat = enum.auto()\n\ndef get_animal(\n    animal: Annotated[str, Doc(\"The animal to get\"), AnimalType],\n) -> str:\n    \"\"\"Returns the animal.\"\"\"\n    return f\"Animal is {animal.value}\"\n```\nIn this example, each name of `AnimalType` enums(`dog`, `cat`) is used as an enum schema.\nIn shorthand, you can use `typing.Literal` as the type will do the same thing.\n\n```python\ndef get_animal(\n    animal: Annotated[Literal[\"dog\", \"cat\"], Doc(\"The animal to get\")],\n) -> str:\n    \"\"\"Returns the animal.\"\"\"\n    return f\"Animal is {animal}\"\n```\n\n\n### Plain String in Annotated\n\nThe string value of `Annotated` is used as a description for convenience.\n\n```python\ndef get_weather(\n    city: Annotated[str, \"The city to get the weather for\"], # <- string value of Annotated is used as a description\n    unit: Annotated[Optional[str], \"The unit to return the temperature in\"] = \"celcius\",\n) -> str:\n    \"\"\"Returns the weather for the given city.\"\"\"\n    return f\"Weather for {city} is 20\u00b0C\"\n```\n\nBut this would create a predefined meaning for any plain string inside of `Annotated`,\nand any tool that was using plain strings in them for any other purpose, which is currently allowed, would now be invalid.\nPlease refer to the [PEP 0727, Plain String in Annotated](https://peps.python.org/pep-0727/#plain-string-in-annotated) for more information.\n\n### Usage with OpenAI API\n\nYou can use this schema to make a function call in OpenAI API:\n```python\nimport openai\nopenai.api_key = \"sk-...\"\n\n# Create an assistant with the function\nassistant = client.beta.assistants.create(\n    instructions=\"You are a weather bot. Use the provided functions to answer questions.\",\n    model=\"gpt-4-turbo-preview\",\n    tools=[{\n        \"type\": \"function\",\n        \"function\": get_function_schema(get_weather),\n    }]\n)\n\nrun = client.beta.messages.create(\n    assistant_id=assistant.id,\n    messages=[\n        {\"role\": \"user\", \"content\": \"What's the weather like in Seoul?\"}\n    ]\n)\n\n# or with chat completion\n\nresult = openai.chat.completion.create(\n    model=\"gpt-3.5-turbo\",\n    messages=[\n        {\"role\": \"user\", \"content\": \"What's the weather like in Seoul?\"}\n    ],\n    tools=[{\n      \"type\": \"function\",\n      \"function\": get_function_schema(get_weather)\n    }],\n    tool_call=\"auto\",\n)\n```\n\n### Usage with Anthropic Claude\n\n```python\nimport anthropic\n\nclient = anthropic.Client()\n\nresponse = client.beta.tools.messages.create(\n    model=\"claude-3-opus-20240229\",\n    max_tokens=4096,\n    tools=[get_function_schema(get_weather, \"claude\")],\n    messages=[\n        {\"role\": \"user\", \"content\": \"What's the weather like in Seoul?\"}\n    ]\n)\n```\n\n### CLI usage\n\n```sh\nfunction_schema mymodule.py my_function | jq\n```\n\n## License\nMIT License\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A small utility to generate JSON schemas for python functions.",
    "version": "0.4.4",
    "project_urls": {
        "Homepage": "https://github.com/comfuture/function-schema",
        "Repository": "https://github.com/comfuture/function-schema"
    },
    "split_keywords": [
        "json-schema",
        " function",
        " documentation",
        " openai",
        " utility"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1594edfe7cd0c804032c37e8499e539ed4c790803d7a4cd400a291ab7ed60595",
                "md5": "8f08ed043f4037503e37076a92859c18",
                "sha256": "fb735bfad77f531650ea857d9ea31437dec1053045f7078d8e2b8483583515fa"
            },
            "downloads": -1,
            "filename": "function_schema-0.4.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8f08ed043f4037503e37076a92859c18",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 7759,
            "upload_time": "2024-09-27T08:06:01",
            "upload_time_iso_8601": "2024-09-27T08:06:01.137524Z",
            "url": "https://files.pythonhosted.org/packages/15/94/edfe7cd0c804032c37e8499e539ed4c790803d7a4cd400a291ab7ed60595/function_schema-0.4.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "da8333bee8379ffddc40d2974440945c6014947ad5a424a72157b0b4e3491609",
                "md5": "950a727c9975d4f5e38822c7902147ba",
                "sha256": "4649808f68d3529bf6088b9d6b52e2ec46b344ea584efe56636958b18af890e8"
            },
            "downloads": -1,
            "filename": "function_schema-0.4.4.tar.gz",
            "has_sig": false,
            "md5_digest": "950a727c9975d4f5e38822c7902147ba",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 6047,
            "upload_time": "2024-09-27T08:06:02",
            "upload_time_iso_8601": "2024-09-27T08:06:02.122241Z",
            "url": "https://files.pythonhosted.org/packages/da/83/33bee8379ffddc40d2974440945c6014947ad5a424a72157b0b4e3491609/function_schema-0.4.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-27 08:06:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "comfuture",
    "github_project": "function-schema",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "function-schema"
}
        
Elapsed time: 0.83955s