funcy-pipe


Namefuncy-pipe JSON
Version 0.12.0 PyPI version JSON
download
home_pagehttps://github.com/iloveitaly/funcy-pipe
SummaryIf Funcy and Pipe had a baby. Decorates all Funcy methods with Pipe superpowers.
upload_time2025-09-10 16:41:07
maintainerNone
docs_urlNone
authorMichael Bianco
requires_python<4.0,>=3.8
licenseMIT
keywords python functional-programming pipe funcy data-manipulation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Release Notes](https://img.shields.io/github/release/iloveitaly/funcy-pipe)](https://github.com/iloveitaly/funcy-pipe/releases) [![Downloads](https://static.pepy.tech/badge/funcy-pipe/month)](https://pepy.tech/project/funcy-pipe) [![Python Versions](https://img.shields.io/pypi/pyversions/funcy-pipe)](https://pypi.org/project/funcy-pipe) ![GitHub CI Status](https://github.com/iloveitaly/funcy-pipe/actions/workflows/build_and_publish.yml/badge.svg) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

# Funcy with pipeline-based operators

If [Funcy](https://github.com/Suor/funcy) and [Pipe](https://github.com/JulienPalard/Pipe) had a baby. Deal with data transformation in python in a sane way.

I love Ruby. It's a great language and one of the things they got right was pipelined data transformation. Elixir got this
even more right with the explicit pipeline operator `|>`.

However, Python is the way of the future. As I worked more with Python, it was driving me nuts that the
data transformation options were not chainable.

This project fixes this pet peeve.

## Installation

```shell
pip install funcy-pipe
```

Or, if you are using poetry:

```shell
poetry add funcy-pipe
```

## Examples

Extract a couple key values from a sql alchemy model:

```python notest
import funcy_pipe as fp

entities_from_sql_alchemy
  | fp.lmap(lambda r: r.to_dict())
  | fp.lmap(lambda r: r | fp.omit(["id", "created_at", "updated_at"]))
  | fp.to_list
```

Or, you can be more fancy and use [whatever](https://github.com/Suor/whatever) and `pmap`:

```python notest
import funcy_pipe as f
import whatever as _

entities_from_sql_alchemy
  | fp.lmap(_.to_dict)
  | fp.pmap(fp.omit(["id", "created_at", "updated_at"]))
  | fp.to_list
```

Create a map from an array of objects, ensuring the key is always an `int`:

```python notest
section_map = api.get_sections() | fp.group_by(f.compose(int, that.id))
```

Grab the ID of a specific user:

```python notest
filter_user_id = (
  collaborator_map().values()
  | fp.where(email=target_user)
  | fp.pluck("id")
  | fp.first()
)
```

Get distinct values from a list (in this case, github events):

```python
events = [
  {
    "type": "PushEvent"
  },
  {
    "type": "CommentEvent"
  }
]

result = events | fp.pluck("type") | fp.distinct() | fp.to_list()

assert ["PushEvent", "CommentEvent"] == result
```

What if the objects are not dicts?

```python notest
filter_user_id = (
  collaborator_map().values()
  | fp.where_attr(email=target_user)
  | fp.pluck_attr("id")
  | fp.first()
)
```

How about creating a dict where each value is sorted:

```python notest
data
  # each element is a dict of city information, let's group by state
  | fp.group_by(itemgetter("state_name"))
  # now let's sort each value by population, which is stored as a string
  | fp.walk_values(
    f.partial(sorted, reverse=True, key=lambda c: int(c["population"])),
  )
```

A more complicated example ([lifted from this project](https://github.com/iloveitaly/todoist-digest/blob/2f893709da2cf3a0f715125053af705fc3adbc4c/run.py#L151-L166)):

```python notest
comments = (
    # tasks are pulled from the todoist api
    tasks
    # get all comments for each relevant task
    | fp.lmap(lambda task: api.get_comments(task_id=task.id))
    # each task's comments are returned as an array, let's flatten this
    | fp.flatten()
    # dates are returned as strings, let's convert them to datetime objects
    | fp.lmap(enrich_date)
    # no date filter is applied by default, we don't want all comments
    | fp.lfilter(lambda comment: comment["posted_at_date"] > last_synced_date)
    # comments do not come with who created the comment by default, we need to hit a separate API to add this to the comment
    | fp.lmap(enrich_comment)
    # only select the comments posted by our target user
    | fp.lfilter(lambda comment: comment["posted_by_user_id"] == filter_user_id)
    # there is no `sort` in the funcy library, so we reexport the sort built-in so it's pipe-able
    | fp.sort(key="posted_at_date")
    # create a dictionary of task_id => [comments]
    | fp.group_by(lambda comment: comment["task_id"])
)
```

Want to grab the values of a list of dict keys?

```python
def add_field_name(input: dict, keys: list[str]) -> dict:
    return input | {
        "field_name": (
            keys
            # this is a sneaky trick: if we reference the objects method, when it's called it will contain a reference
            # to the object
            | fp.map(input.get)
            | fp.compact
            | fp.join_str("_")
        )
    }

result = [{ "category": "python", "header": "functional"}] | fp.map(fp.rpartial(add_field_name, ["category", "header"])) | fp.to_list
assert result == [{'category': 'python', 'header': 'functional', 'field_name': 'python_functional'}]
```

You can also easily test multiple conditions across API data ([extracted from this project](https://github.com/iloveitaly/github-overlord/blob/a3c0e5d0765b3748747e6721e602c0021be0c8e1/github_overlord/__init__.py#L66-L71))

```python notest
all_checks_successful = (
    last_commit.get_check_runs()
    | fp.pluck_attr("conclusion")
    # if you pass a set into `all` each element of the set is used to build a predicate
    # this condition tests if the "conclusion" attribute is either "success" or "skipped"
    | fp.all({"success", "skipped"})
)
```

Want to grab the values of a list of dict keys?

```python
def add_field_name(input: dict, keys: list[str]) -> dict:
    return input | {
        "field_name": (
            keys
            # this is a sneaky trick: if we reference the objects method, when it's called it will contain a reference
            # to the object
            | fp.map(input.get)
            | fp.compact
            | fp.join_str("_")
        )
    }

result = [{ "category": "python", "header": "functional"}] | fp.map(fp.rpartial(add_field_name, ["category", "header"])) | fp.to_list
assert result == [{'category': 'python', 'header': 'functional', 'field_name': 'python_functional'}]
```

You can also easily group dictionaries by a key (or arbitrary function):

```python
import operator

result = [{"age": 10, "name": "Alice"}, {"age": 12, "name": "Bob"}] | fp.group_by(operator.itemgetter("age"))
assert result == {10: [{'age': 10, 'name': 'Alice'}], 12: [{'age': 12, 'name': 'Bob'}]}
```

## Extras

* to_list
* log
* bp. run `breakpoint()` on the input value
* sort
* exactly_one. Throw an error if the input is not exactly one element
* reduce
* pmap. Pass each element of a sequence into a pipe'd function

## Extensions

There [are some functions](funcy_pipe/funcy_extensions.py) which are not yet merged upstream into funcy, and may never be. You can patch `funcy` to add them using:

```python
import funcy_pipe
funcy_pipe.patch()
```

## Coming From Ruby?

* uniq => distinct
* detect => `where(some="Condition") | first` or `where_attr(some="Condition") | first`
* inverse => complement
* times => repeatedly

### Module Alias

Create a module alias for `funcy-pipe` to make things clean (`import *` always irks me):

```python notest
# fp.py
from funcy_pipe import *

# code py
import fp
```

# Inspiration

* Elixir's pipe operator. `array |> map(fn) |> filter(fn)`
* Ruby's enumerable library. `array.map(&:fn).filter(&:fn)`
* https://pypi.org/project/funcy-chain
* https://github.com/JulienPalard/Pipe

# Related Projects

* https://pydash.readthedocs.io/en/latest/

# TODO

- [ ] tests
- [ ] docs for additional utils
- [ ] fix typing threading

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/iloveitaly/funcy-pipe",
    "name": "funcy-pipe",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": null,
    "keywords": "python, functional-programming, pipe, funcy, data-manipulation",
    "author": "Michael Bianco",
    "author_email": "mike@mikebian.co",
    "download_url": "https://files.pythonhosted.org/packages/bf/0b/f8472a25c530e2b5aec87654508d19c3a4fc1cd93762497d565736ada0a5/funcy_pipe-0.12.0.tar.gz",
    "platform": null,
    "description": "[![Release Notes](https://img.shields.io/github/release/iloveitaly/funcy-pipe)](https://github.com/iloveitaly/funcy-pipe/releases) [![Downloads](https://static.pepy.tech/badge/funcy-pipe/month)](https://pepy.tech/project/funcy-pipe) [![Python Versions](https://img.shields.io/pypi/pyversions/funcy-pipe)](https://pypi.org/project/funcy-pipe) ![GitHub CI Status](https://github.com/iloveitaly/funcy-pipe/actions/workflows/build_and_publish.yml/badge.svg) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n\n# Funcy with pipeline-based operators\n\nIf [Funcy](https://github.com/Suor/funcy) and [Pipe](https://github.com/JulienPalard/Pipe) had a baby. Deal with data transformation in python in a sane way.\n\nI love Ruby. It's a great language and one of the things they got right was pipelined data transformation. Elixir got this\neven more right with the explicit pipeline operator `|>`.\n\nHowever, Python is the way of the future. As I worked more with Python, it was driving me nuts that the\ndata transformation options were not chainable.\n\nThis project fixes this pet peeve.\n\n## Installation\n\n```shell\npip install funcy-pipe\n```\n\nOr, if you are using poetry:\n\n```shell\npoetry add funcy-pipe\n```\n\n## Examples\n\nExtract a couple key values from a sql alchemy model:\n\n```python notest\nimport funcy_pipe as fp\n\nentities_from_sql_alchemy\n  | fp.lmap(lambda r: r.to_dict())\n  | fp.lmap(lambda r: r | fp.omit([\"id\", \"created_at\", \"updated_at\"]))\n  | fp.to_list\n```\n\nOr, you can be more fancy and use [whatever](https://github.com/Suor/whatever) and `pmap`:\n\n```python notest\nimport funcy_pipe as f\nimport whatever as _\n\nentities_from_sql_alchemy\n  | fp.lmap(_.to_dict)\n  | fp.pmap(fp.omit([\"id\", \"created_at\", \"updated_at\"]))\n  | fp.to_list\n```\n\nCreate a map from an array of objects, ensuring the key is always an `int`:\n\n```python notest\nsection_map = api.get_sections() | fp.group_by(f.compose(int, that.id))\n```\n\nGrab the ID of a specific user:\n\n```python notest\nfilter_user_id = (\n  collaborator_map().values()\n  | fp.where(email=target_user)\n  | fp.pluck(\"id\")\n  | fp.first()\n)\n```\n\nGet distinct values from a list (in this case, github events):\n\n```python\nevents = [\n  {\n    \"type\": \"PushEvent\"\n  },\n  {\n    \"type\": \"CommentEvent\"\n  }\n]\n\nresult = events | fp.pluck(\"type\") | fp.distinct() | fp.to_list()\n\nassert [\"PushEvent\", \"CommentEvent\"] == result\n```\n\nWhat if the objects are not dicts?\n\n```python notest\nfilter_user_id = (\n  collaborator_map().values()\n  | fp.where_attr(email=target_user)\n  | fp.pluck_attr(\"id\")\n  | fp.first()\n)\n```\n\nHow about creating a dict where each value is sorted:\n\n```python notest\ndata\n  # each element is a dict of city information, let's group by state\n  | fp.group_by(itemgetter(\"state_name\"))\n  # now let's sort each value by population, which is stored as a string\n  | fp.walk_values(\n    f.partial(sorted, reverse=True, key=lambda c: int(c[\"population\"])),\n  )\n```\n\nA more complicated example ([lifted from this project](https://github.com/iloveitaly/todoist-digest/blob/2f893709da2cf3a0f715125053af705fc3adbc4c/run.py#L151-L166)):\n\n```python notest\ncomments = (\n    # tasks are pulled from the todoist api\n    tasks\n    # get all comments for each relevant task\n    | fp.lmap(lambda task: api.get_comments(task_id=task.id))\n    # each task's comments are returned as an array, let's flatten this\n    | fp.flatten()\n    # dates are returned as strings, let's convert them to datetime objects\n    | fp.lmap(enrich_date)\n    # no date filter is applied by default, we don't want all comments\n    | fp.lfilter(lambda comment: comment[\"posted_at_date\"] > last_synced_date)\n    # comments do not come with who created the comment by default, we need to hit a separate API to add this to the comment\n    | fp.lmap(enrich_comment)\n    # only select the comments posted by our target user\n    | fp.lfilter(lambda comment: comment[\"posted_by_user_id\"] == filter_user_id)\n    # there is no `sort` in the funcy library, so we reexport the sort built-in so it's pipe-able\n    | fp.sort(key=\"posted_at_date\")\n    # create a dictionary of task_id => [comments]\n    | fp.group_by(lambda comment: comment[\"task_id\"])\n)\n```\n\nWant to grab the values of a list of dict keys?\n\n```python\ndef add_field_name(input: dict, keys: list[str]) -> dict:\n    return input | {\n        \"field_name\": (\n            keys\n            # this is a sneaky trick: if we reference the objects method, when it's called it will contain a reference\n            # to the object\n            | fp.map(input.get)\n            | fp.compact\n            | fp.join_str(\"_\")\n        )\n    }\n\nresult = [{ \"category\": \"python\", \"header\": \"functional\"}] | fp.map(fp.rpartial(add_field_name, [\"category\", \"header\"])) | fp.to_list\nassert result == [{'category': 'python', 'header': 'functional', 'field_name': 'python_functional'}]\n```\n\nYou can also easily test multiple conditions across API data ([extracted from this project](https://github.com/iloveitaly/github-overlord/blob/a3c0e5d0765b3748747e6721e602c0021be0c8e1/github_overlord/__init__.py#L66-L71))\n\n```python notest\nall_checks_successful = (\n    last_commit.get_check_runs()\n    | fp.pluck_attr(\"conclusion\")\n    # if you pass a set into `all` each element of the set is used to build a predicate\n    # this condition tests if the \"conclusion\" attribute is either \"success\" or \"skipped\"\n    | fp.all({\"success\", \"skipped\"})\n)\n```\n\nWant to grab the values of a list of dict keys?\n\n```python\ndef add_field_name(input: dict, keys: list[str]) -> dict:\n    return input | {\n        \"field_name\": (\n            keys\n            # this is a sneaky trick: if we reference the objects method, when it's called it will contain a reference\n            # to the object\n            | fp.map(input.get)\n            | fp.compact\n            | fp.join_str(\"_\")\n        )\n    }\n\nresult = [{ \"category\": \"python\", \"header\": \"functional\"}] | fp.map(fp.rpartial(add_field_name, [\"category\", \"header\"])) | fp.to_list\nassert result == [{'category': 'python', 'header': 'functional', 'field_name': 'python_functional'}]\n```\n\nYou can also easily group dictionaries by a key (or arbitrary function):\n\n```python\nimport operator\n\nresult = [{\"age\": 10, \"name\": \"Alice\"}, {\"age\": 12, \"name\": \"Bob\"}] | fp.group_by(operator.itemgetter(\"age\"))\nassert result == {10: [{'age': 10, 'name': 'Alice'}], 12: [{'age': 12, 'name': 'Bob'}]}\n```\n\n## Extras\n\n* to_list\n* log\n* bp. run `breakpoint()` on the input value\n* sort\n* exactly_one. Throw an error if the input is not exactly one element\n* reduce\n* pmap. Pass each element of a sequence into a pipe'd function\n\n## Extensions\n\nThere [are some functions](funcy_pipe/funcy_extensions.py) which are not yet merged upstream into funcy, and may never be. You can patch `funcy` to add them using:\n\n```python\nimport funcy_pipe\nfuncy_pipe.patch()\n```\n\n## Coming From Ruby?\n\n* uniq => distinct\n* detect => `where(some=\"Condition\") | first` or `where_attr(some=\"Condition\") | first`\n* inverse => complement\n* times => repeatedly\n\n### Module Alias\n\nCreate a module alias for `funcy-pipe` to make things clean (`import *` always irks me):\n\n```python notest\n# fp.py\nfrom funcy_pipe import *\n\n# code py\nimport fp\n```\n\n# Inspiration\n\n* Elixir's pipe operator. `array |> map(fn) |> filter(fn)`\n* Ruby's enumerable library. `array.map(&:fn).filter(&:fn)`\n* https://pypi.org/project/funcy-chain\n* https://github.com/JulienPalard/Pipe\n\n# Related Projects\n\n* https://pydash.readthedocs.io/en/latest/\n\n# TODO\n\n- [ ] tests\n- [ ] docs for additional utils\n- [ ] fix typing threading\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "If Funcy and Pipe had a baby. Decorates all Funcy methods with Pipe superpowers.",
    "version": "0.12.0",
    "project_urls": {
        "Homepage": "https://github.com/iloveitaly/funcy-pipe"
    },
    "split_keywords": [
        "python",
        " functional-programming",
        " pipe",
        " funcy",
        " data-manipulation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "46fc4d54374a988b8619d950cd32cc1cfd3c07a4af85811fea1b68ecb40fdcd3",
                "md5": "8c9b0b980ca0b511211d61c7d07d8c4c",
                "sha256": "7afe5e07702352cbcfe4ea60ae13a1540c84e2d14f58b3997fecde13d189db6a"
            },
            "downloads": -1,
            "filename": "funcy_pipe-0.12.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8c9b0b980ca0b511211d61c7d07d8c4c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 10851,
            "upload_time": "2025-09-10T16:41:07",
            "upload_time_iso_8601": "2025-09-10T16:41:07.064017Z",
            "url": "https://files.pythonhosted.org/packages/46/fc/4d54374a988b8619d950cd32cc1cfd3c07a4af85811fea1b68ecb40fdcd3/funcy_pipe-0.12.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bf0bf8472a25c530e2b5aec87654508d19c3a4fc1cd93762497d565736ada0a5",
                "md5": "cad11240072ae2b0453a06997d5f6d20",
                "sha256": "418a200c7fec3caf2ca5204b78c0009e26ee157724d14ef48d210acb49a28655"
            },
            "downloads": -1,
            "filename": "funcy_pipe-0.12.0.tar.gz",
            "has_sig": false,
            "md5_digest": "cad11240072ae2b0453a06997d5f6d20",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8",
            "size": 11759,
            "upload_time": "2025-09-10T16:41:07",
            "upload_time_iso_8601": "2025-09-10T16:41:07.861840Z",
            "url": "https://files.pythonhosted.org/packages/bf/0b/f8472a25c530e2b5aec87654508d19c3a4fc1cd93762497d565736ada0a5/funcy_pipe-0.12.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-10 16:41:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "iloveitaly",
    "github_project": "funcy-pipe",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "funcy-pipe"
}
        
Elapsed time: 3.36267s