funda-scraper-private


Namefunda-scraper-private JSON
Version 1.2.1 PyPI version JSON
download
home_pageNone
SummaryFundaScaper provides the easiest way to perform web scraping on Funda, the Dutch housing website. You can find houses either for sale or for rent, and access historical data from the past few years.
upload_time2025-03-20 15:10:19
maintainerNone
docs_urlNone
authorWill Chien
requires_python<4.0,>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FundaScraper 🏡

[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
[![PEP8](https://img.shields.io/badge/code%20style-pep8-orange.svg)](https://www.python.org/dev/peps/pep-0008/)

`FundaScaper` provides the easiest way to perform web scraping on Funda, the Dutch housing website. You can find houses either for sale or for rent, and access historical data from the past few years.

Please note:
1. Scraping this website is ONLY allowed for personal use (as per Funda's Terms and Conditions).
2. Any commercial use of this Python package is prohibited. The author holds no liability for any misuse of the package.

## Install
### Install with pip:
```
pip install funda-scraper
```
### Clone the repository:
```
git clone https://github.com/wouterstultiens/funda-scraper.git
cd funda-scraper
pip install -r requirements.txt
python funda_scraper/scrape.py --area amsterdam --want_to rent --page_start 1 --n_pages 3 --save
```

## Quickstart 
```
from funda_scraper import FundaScraper

scraper = FundaScraper(
    area="amsterdam", 
    want_to="rent", 
    find_past=False, 
    page_start=1, 
    n_pages=3, 
    min_price=500, 
    max_price=2000
)
df = scraper.run(raw_data=False, save=True, filepath="test.csv")
df.head()
```
![image](static/example_df.png)


* Note for Windows Users: Please add `if __name__ == "__main__":` before your script.

## Customizing Your Scraping
You can pass several arguments to `FundaScraper()` for customized scraping:
- `area`: Specify the city or specific area you want to look for, e.g. Amsterdam, Utrecht, Rotterdam, etc.
- `want_to`: Choose either `buy` or `rent` to find houses either for sale or for rent.
- `find_past`: Set to `True` to find historical data; the default is `False`.
- `page_start`: Indicate which page to start scraping from; the default is `1`. 
- `n_pages`: Indicate how many pages to scrape; the default is `1`. 
- `min_price`: Indicate the lowest budget amount.
- `max_price`: Indicate the highest budget amount.
- `min_floor_area`: Indicate the minimum floor area.
- `max_floor_area`: Indicate the maximum floor area.
- `days_since:`: Specify the maximum number of days since the listing date.
- `property_type`: Specify the desired property type(s).
- `sort`: Specify sorting criteria.


The scraped raw result contains following information:
- url
- price
- address
- description
- listed_since
- zip_code 
- size
- year_built
- living_area
- kind_of_house
- building_type
- num_of_rooms
- num_of_bathrooms
- layout
- energy_label
- insulation
- heating
- ownership
- exteriors
- parking
- neighborhood_name
- date_list
- date_sold
- term
- price_sold
- last_ask_price
- last_ask_price_m2
- city

To fetch the data without preprocessing, specify `scraper.run(raw_data=True)`.

*Note*: Information regarding listing dates is no longer available since Q4 2023. Funda requires users to log in to see this information.


## More information

If you find this project helpful, please give it a [star](https://github.com/wouterstultiens/funda-scraper).

*Note: This is a fork of the original [funda-scraper](https://github.com/whchien/funda-scraper) project.*

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "funda-scraper-private",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Will Chien",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/e3/41/8fa23e2e49069387f0ce5eeb2ca150d2d021daee7fd5cf21dcf5b6b03de6/funda_scraper_private-1.2.1.tar.gz",
    "platform": null,
    "description": "# FundaScraper \ud83c\udfe1\n\n[![Project Status: Active \u2013 The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)\n[![PEP8](https://img.shields.io/badge/code%20style-pep8-orange.svg)](https://www.python.org/dev/peps/pep-0008/)\n\n`FundaScaper` provides the easiest way to perform web scraping on Funda, the Dutch housing website. You can find houses either for sale or for rent, and access historical data from the past few years.\n\nPlease note:\n1. Scraping this website is ONLY allowed for personal use (as per Funda's Terms and Conditions).\n2. Any commercial use of this Python package is prohibited. The author holds no liability for any misuse of the package.\n\n## Install\n### Install with pip:\n```\npip install funda-scraper\n```\n### Clone the repository:\n```\ngit clone https://github.com/wouterstultiens/funda-scraper.git\ncd funda-scraper\npip install -r requirements.txt\npython funda_scraper/scrape.py --area amsterdam --want_to rent --page_start 1 --n_pages 3 --save\n```\n\n## Quickstart \n```\nfrom funda_scraper import FundaScraper\n\nscraper = FundaScraper(\n    area=\"amsterdam\", \n    want_to=\"rent\", \n    find_past=False, \n    page_start=1, \n    n_pages=3, \n    min_price=500, \n    max_price=2000\n)\ndf = scraper.run(raw_data=False, save=True, filepath=\"test.csv\")\ndf.head()\n```\n![image](static/example_df.png)\n\n\n* Note for Windows Users: Please add `if __name__ == \"__main__\":` before your script.\n\n## Customizing Your Scraping\nYou can pass several arguments to `FundaScraper()` for customized scraping:\n- `area`: Specify the city or specific area you want to look for, e.g. Amsterdam, Utrecht, Rotterdam, etc.\n- `want_to`: Choose either `buy` or `rent` to find houses either for sale or for rent.\n- `find_past`: Set to `True` to find historical data; the default is `False`.\n- `page_start`: Indicate which page to start scraping from; the default is `1`. \n- `n_pages`: Indicate how many pages to scrape; the default is `1`. \n- `min_price`: Indicate the lowest budget amount.\n- `max_price`: Indicate the highest budget amount.\n- `min_floor_area`: Indicate the minimum floor area.\n- `max_floor_area`: Indicate the maximum floor area.\n- `days_since:`: Specify the maximum number of days since the listing date.\n- `property_type`: Specify the desired property type(s).\n- `sort`: Specify sorting criteria.\n\n\nThe scraped raw result contains following information:\n- url\n- price\n- address\n- description\n- listed_since\n- zip_code \n- size\n- year_built\n- living_area\n- kind_of_house\n- building_type\n- num_of_rooms\n- num_of_bathrooms\n- layout\n- energy_label\n- insulation\n- heating\n- ownership\n- exteriors\n- parking\n- neighborhood_name\n- date_list\n- date_sold\n- term\n- price_sold\n- last_ask_price\n- last_ask_price_m2\n- city\n\nTo fetch the data without preprocessing, specify `scraper.run(raw_data=True)`.\n\n*Note*: Information regarding listing dates is no longer available since Q4 2023. Funda requires users to log in to see this information.\n\n\n## More information\n\nIf you find this project helpful, please give it a [star](https://github.com/wouterstultiens/funda-scraper).\n\n*Note: This is a fork of the original [funda-scraper](https://github.com/whchien/funda-scraper) project.*\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "FundaScaper provides the easiest way to perform web scraping on Funda, the Dutch housing website. You can find houses either for sale or for rent, and access historical data from the past few years.",
    "version": "1.2.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "84f9575a62ba3e088f65320e68d4f0349ca9fd1fee8d56387b324e30f1fb3f2e",
                "md5": "c9ee2814b59ec05a2b32538fbd48d2f3",
                "sha256": "9f281bcaf513fac985f538970ae1194514e9fb5f07a61731207ef1b73c9a7e16"
            },
            "downloads": -1,
            "filename": "funda_scraper_private-1.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c9ee2814b59ec05a2b32538fbd48d2f3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 27173,
            "upload_time": "2025-03-20T15:10:18",
            "upload_time_iso_8601": "2025-03-20T15:10:18.196622Z",
            "url": "https://files.pythonhosted.org/packages/84/f9/575a62ba3e088f65320e68d4f0349ca9fd1fee8d56387b324e30f1fb3f2e/funda_scraper_private-1.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e3418fa23e2e49069387f0ce5eeb2ca150d2d021daee7fd5cf21dcf5b6b03de6",
                "md5": "6c2a11c221b36d4230b7b0eac724d7c4",
                "sha256": "0f98468f73424ec952e6bc4480737254fb279e44568c1e4c6877fc2e248f1872"
            },
            "downloads": -1,
            "filename": "funda_scraper_private-1.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "6c2a11c221b36d4230b7b0eac724d7c4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8",
            "size": 24715,
            "upload_time": "2025-03-20T15:10:19",
            "upload_time_iso_8601": "2025-03-20T15:10:19.369641Z",
            "url": "https://files.pythonhosted.org/packages/e3/41/8fa23e2e49069387f0ce5eeb2ca150d2d021daee7fd5cf21dcf5b6b03de6/funda_scraper_private-1.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-03-20 15:10:19",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "funda-scraper-private"
}
        
Elapsed time: 0.41091s