# 💠Future Frame
Empowering Data Scientists with Foundation Models for Tabular Data
- This Python package allows you to interact with pre-trained foundation models for tabular data.
- Easily fine-tune them on your classification and regression use cases in a single line of code.
- Interested in what we're building? Join our [waitlist](https://futureframe.ai/)!
## Installation
1. Install Future Frame with `pip` – more details on our [PyPI page](https://pypi.org/project/futureframe/).
```bash
pip install futureframe
```
## Quick Start
Use Future Frame to fine-tune a pre-trained foundation model on a classification task.
```python linenums="1"
# Import standard libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
# Import Future Frame
import futureframe as ff
# Import data
dataset_name = "https://raw.githubusercontent.com/futureframeai/futureframe/main/tests/data/churn.csv"
target_variable = "Churn"
df = pd.read_csv(dataset_name)
# Split data
X, y = df.drop(columns=[target_variable]), df[target_variable]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
# Fine-tune a pre-trained classifier with Future Frame
model = ff.models.cm2.CM2Classifier()
model.finetune(X_train, y_train)
# Make predictions with Future Frame
y_pred = model.predict(X_test)
# Evaluate your model
auc = roc_auc_score(y_test, y_pred)
print(f"AUC: {auc:0.2f}")
```
## Models
| Model Name | Paper Title | Paper | GitHub |
| ---------- | ---------------------------------------------------------- | --------------------------------------------------- | -------------------------------------- |
| CM2 | Towards Cross-Table Masked Pretraining for Web Data Mining | [Ye et al., 2024](https://arxiv.org/abs/2307.04308) | [Link](https://github.com/Chao-Ye/CM2) |
More foundation models will be integrated into the library soon. Stay tuned by joining our [waitlist](https://futureframe.ai/)!
## Links
- [Future Frame Official Website](https://futureframe.ai/)
- [Future Frame API Reference](https://futureframe.ai/api-reference/)
- [`futureframe` PyPI Page](https://pypi.python.org/pypi/futureframe)
- [`futureframe` GitHub Repository](https://github.com/futureframeai/futureframe)
- [`futureframe` Documentation](https://futureframe.ai/docs/)
## Contributing
- We are currently under heavy development.
- If you'd like to contribute, please send us an email at <i>eduardo(at)futureframe.ai</i>.
- To report a bug, please write an [issue](https://github.com/futureframeai/futureframe/issues/new).
Raw data
{
"_id": null,
"home_page": "https://futureframe.ai",
"name": "futureframe",
"maintainer": "Eduardo Dadalto",
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": "eduardo@futureframe.ai",
"keywords": "data science, foundation models, tabular data",
"author": "Future Frame",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/df/da/d94f2f41d8ef1e14e4114d89e0290058a07f1d308c2ff50e592d51dbfdfe/futureframe-0.2.5.tar.gz",
"platform": null,
"description": "# \ud83d\udca0 Future Frame\n\nEmpowering Data Scientists with Foundation Models for Tabular Data\n\n- This Python package allows you to interact with pre-trained foundation models for tabular data.\n- Easily fine-tune them on your classification and regression use cases in a single line of code.\n- Interested in what we're building? Join our [waitlist](https://futureframe.ai/)!\n\n## Installation\n\n1. Install Future Frame with `pip` \u2013 more details on our [PyPI page](https://pypi.org/project/futureframe/).\n\n```bash\npip install futureframe\n```\n\n## Quick Start\n\nUse Future Frame to fine-tune a pre-trained foundation model on a classification task.\n\n```python linenums=\"1\"\n# Import standard libraries\nimport pandas as pd\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import roc_auc_score\n\n# Import Future Frame\nimport futureframe as ff\n\n# Import data\ndataset_name = \"https://raw.githubusercontent.com/futureframeai/futureframe/main/tests/data/churn.csv\"\ntarget_variable = \"Churn\"\ndf = pd.read_csv(dataset_name)\n\n# Split data\nX, y = df.drop(columns=[target_variable]), df[target_variable]\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)\n\n# Fine-tune a pre-trained classifier with Future Frame\nmodel = ff.models.cm2.CM2Classifier()\nmodel.finetune(X_train, y_train)\n\n# Make predictions with Future Frame\ny_pred = model.predict(X_test)\n\n# Evaluate your model\nauc = roc_auc_score(y_test, y_pred)\nprint(f\"AUC: {auc:0.2f}\")\n```\n\n## Models\n\n| Model Name | Paper Title | Paper | GitHub |\n| ---------- | ---------------------------------------------------------- | --------------------------------------------------- | -------------------------------------- |\n| CM2 | Towards Cross-Table Masked Pretraining for Web Data Mining | [Ye et al., 2024](https://arxiv.org/abs/2307.04308) | [Link](https://github.com/Chao-Ye/CM2) |\n\nMore foundation models will be integrated into the library soon. Stay tuned by joining our [waitlist](https://futureframe.ai/)!\n\n## Links\n\n- [Future Frame Official Website](https://futureframe.ai/)\n- [Future Frame API Reference](https://futureframe.ai/api-reference/)\n- [`futureframe` PyPI Page](https://pypi.python.org/pypi/futureframe)\n- [`futureframe` GitHub Repository](https://github.com/futureframeai/futureframe)\n- [`futureframe` Documentation](https://futureframe.ai/docs/)\n\n## Contributing\n\n- We are currently under heavy development.\n- If you'd like to contribute, please send us an email at <i>eduardo(at)futureframe.ai</i>.\n- To report a bug, please write an [issue](https://github.com/futureframeai/futureframe/issues/new).\n",
"bugtrack_url": null,
"license": null,
"summary": "Accelerate your data science workflow from months to days with foundation models for tabular data.",
"version": "0.2.5",
"project_urls": {
"Documentation": "https://futureframe.ai/docs",
"Homepage": "https://futureframe.ai",
"Repository": "https://github.com/futureframeai/futureframe"
},
"split_keywords": [
"data science",
" foundation models",
" tabular data"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "eb69579eb3a17bd4092e96a2a68f3eaf30e1f693984977cb1d36ca8ed3020c28",
"md5": "bef35e2951d5a3439ab5e8016fa7d40c",
"sha256": "ddbc3dba2961c997af0a6d9e81fe05e1446f5fab7aea0bc8ad8c3478d18f7a26"
},
"downloads": -1,
"filename": "futureframe-0.2.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "bef35e2951d5a3439ab5e8016fa7d40c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 44124,
"upload_time": "2024-08-29T17:53:56",
"upload_time_iso_8601": "2024-08-29T17:53:56.403794Z",
"url": "https://files.pythonhosted.org/packages/eb/69/579eb3a17bd4092e96a2a68f3eaf30e1f693984977cb1d36ca8ed3020c28/futureframe-0.2.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dfdad94f2f41d8ef1e14e4114d89e0290058a07f1d308c2ff50e592d51dbfdfe",
"md5": "e9ce10ddffe463e8785217f93f36816e",
"sha256": "98687c37e6cf31d3cb602b9ca1f6f4c41fc2ca7d9fdc5a09e7e0b068b0af94d1"
},
"downloads": -1,
"filename": "futureframe-0.2.5.tar.gz",
"has_sig": false,
"md5_digest": "e9ce10ddffe463e8785217f93f36816e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 37708,
"upload_time": "2024-08-29T17:53:57",
"upload_time_iso_8601": "2024-08-29T17:53:57.630176Z",
"url": "https://files.pythonhosted.org/packages/df/da/d94f2f41d8ef1e14e4114d89e0290058a07f1d308c2ff50e592d51dbfdfe/futureframe-0.2.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-29 17:53:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "futureframeai",
"github_project": "futureframe",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "futureframe"
}