# GADMA ![](http://jb.gg/badges/research-flat-square.svg)
[![Docs](https://readthedocs.org/projects/gadma/badge/?version=latest)](https://gadma.readthedocs.io/en/latest/?badge=latest) [![Build status](https://github.com/ctlab/GADMA/workflows/build/badge.svg)](https://github.com/ctlab/GADMA/actions) [![codecov](https://codecov.io/gh/ctlab/GADMA/branch/master/graph/badge.svg?token=F303UDEWDJ)](https://codecov.io/gh/ctlab/GADMA) [![PyPI - Downloads](https://img.shields.io/pypi/dm/gadma)](https://pypistats.org/packages/gadma)
Welcome to GADMA v2!
GADMA implements methods for automatic inference of the joint demographic history of multiple populations from the genetic data.
**GADMA is a command-line tool**. Basic pipeline presents a series of launches of the global search algorithm followed by the local search optimization.
GADMA provides two types of demographic inference: 1) for user-specified model of demographic history or a custom model, 2) automatic inference for the model with specified structure (up to three populations, see more [here](https://gadma.readthedocs.io/en/latest/user_manual/set_model/set_model_struct.html)).
GADMA provides choice of several engines of demographic inference. This list will be extended in the future. Available engines and maximum number of supported populations for custom model:
* [∂a∂i](https://bitbucket.org/gutenkunstlab/dadi/) (up to 5 populations)
* [*moments*](https://bitbucket.org/simongravel/moments/) (up to 5 populations)
* [*momi2*](https://github.com/popgenmethods/momi2/) (up to ∞ populations)
* [*momentsLD*](https://bitbucket.org/simongravel/moments/) - extenstion of *moments* (up to 5 populations)
More information about engines see [here](https://gadma.readthedocs.io/en/latest/user_manual/set_engine.html).
GADMA features various optimization methods ([global](https://gadma.readthedocs.io/en/latest/api/gadma.optimizers.html#global-optimizers-list) and [local](https://gadma.readthedocs.io/en/latest/api/gadma.optimizers.html#local-optimizers-list) search algorithms) which may be used for [any general optimization problem](https://gadma.readthedocs.io/en/latest/api_examples/optimization_example.html).
Two global search algorithms are supported in GADMA:
* Genetic algorithm — the most common choice of optimization,
* Bayesian optimization — for demographic inference with time-consuming evaluations, e.g. for four and five populations using *moments* or ∂a∂i.
GADMA is developed in Computer Technologies laboratory at ITMO University under the supervision of [Vladimir Ulyantsev](https://ulyantsev.com/) and Pavel Dobrynin. The principal maintainer is [Ekaterina Noskova](http://enoskova.me/) (ekaterina.e.noskova@gmail.com)
**GADMA is now of version 2!** See [Changelog](https://gadma.readthedocs.io/en/latest/changelogs.html).
### Documentation
Please see [documentation](https://gadma.readthedocs.io) for more information including installation instructions, usage, examples and API.
## Getting help
[F.A.Q.](https://gadma.readthedocs.io/en/latest/faq.html)
Please don't be afraid to contact me for different problems and offers via email ekaterina.e.noskova@gmail.com. I will be glad to answer all questions.
Also you are always welcome to [create an issue](https://github.com/ctlab/GADMA/issues) on the GitHub page of GADMA with your question.
## Citations
Please see full list of citations in [documentation](https://gadma.readthedocs.io/en/latest/citations.html).
If you use GADMA in your research please cite:
Ekaterina Noskova, Vladimir Ulyantsev, Klaus-Peter Koepfli, Stephen J O’Brien, Pavel Dobrynin, GADMA: Genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data, *GigaScience*, Volume 9, Issue 3, March 2020, giaa005, <https://doi.org/10.1093/gigascience/giaa005>
If you use GADMA2 in your research please cite:
Ekaterina Noskova, Nikita Abramov, Stanislav Iliutkin, Anton Sidorin, Pavel Dobrynin, and Vladimir Ulyantsev, GADMA2: more efficient and flexible demographic inference from genetic data, *GigaScience*, Volume 12, August 2023, giad059, <https://doi.org/10.1093/gigascience/giad059>
If you use Bayesian optimization please cite:
Ekaterina Noskova and Viacheslav Borovitskiy, Bayesian optimization for demographic inference, *G3 Genes|Genomes|Genetics*, Volume 13, Issue 7, July 2023, jkad080, <https://doi.org/10.1093/g3journal/jkad080>
Raw data
{
"_id": null,
"home_page": "https://github.com/ctlab/GADMA",
"name": "gadma",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "demographic history, demographic inference, evolution, population genetics",
"author": "Ekaterina Noskova",
"author_email": "ekaterina.e.noskova@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/4a/9f/92ec8e091d58d0b5133ce8fec0fc4a45c5c937ab3fec4feb7bbdba7ad691/gadma-2.0.2.tar.gz",
"platform": null,
"description": "# GADMA ![](http://jb.gg/badges/research-flat-square.svg)\n\n[![Docs](https://readthedocs.org/projects/gadma/badge/?version=latest)](https://gadma.readthedocs.io/en/latest/?badge=latest) [![Build status](https://github.com/ctlab/GADMA/workflows/build/badge.svg)](https://github.com/ctlab/GADMA/actions) [![codecov](https://codecov.io/gh/ctlab/GADMA/branch/master/graph/badge.svg?token=F303UDEWDJ)](https://codecov.io/gh/ctlab/GADMA) [![PyPI - Downloads](https://img.shields.io/pypi/dm/gadma)](https://pypistats.org/packages/gadma)\n\nWelcome to GADMA v2!\n\nGADMA implements methods for automatic inference of the joint demographic history of multiple populations from the genetic data.\n\n**GADMA is a command-line tool**. Basic pipeline presents a series of launches of the global search algorithm followed by the local search optimization.\n\nGADMA provides two types of demographic inference: 1) for user-specified model of demographic history or a custom model, 2) automatic inference for the model with specified structure (up to three populations, see more [here](https://gadma.readthedocs.io/en/latest/user_manual/set_model/set_model_struct.html)).\n\nGADMA provides choice of several engines of demographic inference. This list will be extended in the future. Available engines and maximum number of supported populations for custom model:\n\n* [\u2202a\u2202i](https://bitbucket.org/gutenkunstlab/dadi/) (up to 5 populations)\n* [*moments*](https://bitbucket.org/simongravel/moments/) (up to 5 populations)\n* [*momi2*](https://github.com/popgenmethods/momi2/) (up to \u221e populations)\n* [*momentsLD*](https://bitbucket.org/simongravel/moments/) - extenstion of *moments* (up to 5 populations)\n\nMore information about engines see [here](https://gadma.readthedocs.io/en/latest/user_manual/set_engine.html).\n\nGADMA features various optimization methods ([global](https://gadma.readthedocs.io/en/latest/api/gadma.optimizers.html#global-optimizers-list) and [local](https://gadma.readthedocs.io/en/latest/api/gadma.optimizers.html#local-optimizers-list) search algorithms) which may be used for [any general optimization problem](https://gadma.readthedocs.io/en/latest/api_examples/optimization_example.html).\n\nTwo global search algorithms are supported in GADMA:\n\n* Genetic algorithm \u2014 the most common choice of optimization,\n* Bayesian optimization \u2014 for demographic inference with time-consuming evaluations, e.g. for four and five populations using *moments* or \u2202a\u2202i.\n\nGADMA is developed in Computer Technologies laboratory at ITMO University under the supervision of [Vladimir Ulyantsev](https://ulyantsev.com/) and Pavel Dobrynin. The principal maintainer is [Ekaterina Noskova](http://enoskova.me/) (ekaterina.e.noskova@gmail.com)\n\n**GADMA is now of version 2!** See [Changelog](https://gadma.readthedocs.io/en/latest/changelogs.html).\n\n### Documentation\n\nPlease see [documentation](https://gadma.readthedocs.io) for more information including installation instructions, usage, examples and API.\n\n## Getting help\n\n[F.A.Q.](https://gadma.readthedocs.io/en/latest/faq.html)\n\nPlease don't be afraid to contact me for different problems and offers via email ekaterina.e.noskova@gmail.com. I will be glad to answer all questions.\n\nAlso you are always welcome to [create an issue](https://github.com/ctlab/GADMA/issues) on the GitHub page of GADMA with your question.\n\n## Citations\n\nPlease see full list of citations in [documentation](https://gadma.readthedocs.io/en/latest/citations.html).\n\nIf you use GADMA in your research please cite:\n\nEkaterina Noskova, Vladimir Ulyantsev, Klaus-Peter Koepfli, Stephen J O\u2019Brien, Pavel Dobrynin, GADMA: Genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data, *GigaScience*, Volume 9, Issue 3, March 2020, giaa005, <https://doi.org/10.1093/gigascience/giaa005>\n\nIf you use GADMA2 in your research please cite:\n\nEkaterina Noskova, Nikita Abramov, Stanislav Iliutkin, Anton Sidorin, Pavel Dobrynin, and Vladimir Ulyantsev, GADMA2: more efficient and flexible demographic inference from genetic data, *GigaScience*, Volume 12, August 2023, giad059, <https://doi.org/10.1093/gigascience/giad059>\n\nIf you use Bayesian optimization please cite:\n\nEkaterina Noskova and Viacheslav Borovitskiy, Bayesian optimization for demographic inference, *G3 Genes|Genomes|Genetics*, Volume 13, Issue 7, July 2023, jkad080, <https://doi.org/10.1093/g3journal/jkad080>\n",
"bugtrack_url": null,
"license": "GNU GPLv3+",
"summary": "A tool for easy-to-use demographic inference",
"version": "2.0.2",
"project_urls": {
"Bug Tracker": "https://github.com/ctlab/GADMA/issues",
"Documentation": "https://gadma.readthedocs.io/en/stable/",
"Homepage": "https://github.com/ctlab/GADMA",
"Source Code": "https://github.com/ctlab/GADMA"
},
"split_keywords": [
"demographic history",
" demographic inference",
" evolution",
" population genetics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a76666e6fb823b8a74360fba23b39d4542a66a2037b420ff944e2bac20dc18c5",
"md5": "07394d51b745a3facc346b728cc9b530",
"sha256": "b4827866463dec2d0adf4a28b44e96338ac06caf98eef1a839b4b3728d3f8657"
},
"downloads": -1,
"filename": "gadma-2.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "07394d51b745a3facc346b728cc9b530",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 213582,
"upload_time": "2024-11-06T16:25:48",
"upload_time_iso_8601": "2024-11-06T16:25:48.705631Z",
"url": "https://files.pythonhosted.org/packages/a7/66/66e6fb823b8a74360fba23b39d4542a66a2037b420ff944e2bac20dc18c5/gadma-2.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4a9f92ec8e091d58d0b5133ce8fec0fc4a45c5c937ab3fec4feb7bbdba7ad691",
"md5": "a55bed908051520329d75cf5d11c9e5b",
"sha256": "f7b610d0d347e97afb30e6b5f9a814c19e479203838de31aa2e44f7427073db5"
},
"downloads": -1,
"filename": "gadma-2.0.2.tar.gz",
"has_sig": false,
"md5_digest": "a55bed908051520329d75cf5d11c9e5b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 65203598,
"upload_time": "2024-11-06T16:25:51",
"upload_time_iso_8601": "2024-11-06T16:25:51.363407Z",
"url": "https://files.pythonhosted.org/packages/4a/9f/92ec8e091d58d0b5133ce8fec0fc4a45c5c937ab3fec4feb7bbdba7ad691/gadma-2.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-06 16:25:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ctlab",
"github_project": "GADMA",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "gadma"
}