gadma


Namegadma JSON
Version 2.0.2 PyPI version JSON
download
home_pagehttps://github.com/ctlab/GADMA
SummaryA tool for easy-to-use demographic inference
upload_time2024-11-06 16:25:51
maintainerNone
docs_urlNone
authorEkaterina Noskova
requires_python>=3.6
licenseGNU GPLv3+
keywords demographic history demographic inference evolution population genetics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GADMA ![](http://jb.gg/badges/research-flat-square.svg)

[![Docs](https://readthedocs.org/projects/gadma/badge/?version=latest)](https://gadma.readthedocs.io/en/latest/?badge=latest) [![Build status](https://github.com/ctlab/GADMA/workflows/build/badge.svg)](https://github.com/ctlab/GADMA/actions) [![codecov](https://codecov.io/gh/ctlab/GADMA/branch/master/graph/badge.svg?token=F303UDEWDJ)](https://codecov.io/gh/ctlab/GADMA) [![PyPI - Downloads](https://img.shields.io/pypi/dm/gadma)](https://pypistats.org/packages/gadma)

Welcome to GADMA v2!

GADMA implements methods for automatic inference of the joint demographic history of multiple populations from the genetic data.

**GADMA is a command-line tool**. Basic pipeline presents a series of launches of the global search algorithm followed by the local search optimization.

GADMA provides two types of demographic inference: 1) for user-specified model of demographic history or a custom model, 2) automatic inference for the model with specified structure (up to three populations, see more [here](https://gadma.readthedocs.io/en/latest/user_manual/set_model/set_model_struct.html)).

GADMA provides choice of several engines of demographic inference. This list will be extended in the future. Available engines and maximum number of supported populations for custom model:

* [∂a∂i](https://bitbucket.org/gutenkunstlab/dadi/) (up to 5 populations)
* [*moments*](https://bitbucket.org/simongravel/moments/) (up to 5 populations)
* [*momi2*](https://github.com/popgenmethods/momi2/) (up to ∞ populations)
* [*momentsLD*](https://bitbucket.org/simongravel/moments/) - extenstion of *moments* (up to 5 populations)

More information about engines see [here](https://gadma.readthedocs.io/en/latest/user_manual/set_engine.html).

GADMA features various optimization methods ([global](https://gadma.readthedocs.io/en/latest/api/gadma.optimizers.html#global-optimizers-list) and [local](https://gadma.readthedocs.io/en/latest/api/gadma.optimizers.html#local-optimizers-list) search algorithms) which may be used for [any general optimization problem](https://gadma.readthedocs.io/en/latest/api_examples/optimization_example.html).

Two global search algorithms are supported in GADMA:

* Genetic algorithm — the most common choice of optimization,
* Bayesian optimization — for demographic inference with time-consuming evaluations, e.g. for four and five populations using *moments* or ∂a∂i.

GADMA is developed in Computer Technologies laboratory at ITMO University under the supervision of [Vladimir Ulyantsev](https://ulyantsev.com/) and Pavel Dobrynin. The principal maintainer is [Ekaterina Noskova](http://enoskova.me/) (ekaterina.e.noskova@gmail.com)

**GADMA is now of version 2!** See [Changelog](https://gadma.readthedocs.io/en/latest/changelogs.html).

### Documentation

Please see [documentation](https://gadma.readthedocs.io) for more information including installation instructions, usage, examples and API.

## Getting help

[F.A.Q.](https://gadma.readthedocs.io/en/latest/faq.html)

Please don't be afraid to contact me for different problems and offers via email ekaterina.e.noskova@gmail.com. I will be glad to answer all questions.

Also you are always welcome to [create an issue](https://github.com/ctlab/GADMA/issues) on the GitHub page of GADMA with your question.

## Citations

Please see full list of citations in [documentation](https://gadma.readthedocs.io/en/latest/citations.html).

If you use GADMA in your research please cite:

Ekaterina Noskova, Vladimir Ulyantsev, Klaus-Peter Koepfli, Stephen J O’Brien, Pavel Dobrynin, GADMA: Genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data, *GigaScience*, Volume 9, Issue 3, March 2020, giaa005, <https://doi.org/10.1093/gigascience/giaa005>

If you use GADMA2 in your research please cite:

Ekaterina Noskova, Nikita Abramov, Stanislav Iliutkin, Anton Sidorin, Pavel Dobrynin, and Vladimir Ulyantsev, GADMA2: more efficient and flexible demographic inference from genetic data, *GigaScience*, Volume 12, August 2023, giad059, <https://doi.org/10.1093/gigascience/giad059>

If you use Bayesian optimization please cite:

Ekaterina Noskova and Viacheslav Borovitskiy, Bayesian optimization for demographic inference, *G3 Genes|Genomes|Genetics*, Volume 13, Issue 7, July 2023, jkad080, <https://doi.org/10.1093/g3journal/jkad080>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ctlab/GADMA",
    "name": "gadma",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "demographic history, demographic inference, evolution, population genetics",
    "author": "Ekaterina Noskova",
    "author_email": "ekaterina.e.noskova@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/4a/9f/92ec8e091d58d0b5133ce8fec0fc4a45c5c937ab3fec4feb7bbdba7ad691/gadma-2.0.2.tar.gz",
    "platform": null,
    "description": "# GADMA ![](http://jb.gg/badges/research-flat-square.svg)\n\n[![Docs](https://readthedocs.org/projects/gadma/badge/?version=latest)](https://gadma.readthedocs.io/en/latest/?badge=latest) [![Build status](https://github.com/ctlab/GADMA/workflows/build/badge.svg)](https://github.com/ctlab/GADMA/actions) [![codecov](https://codecov.io/gh/ctlab/GADMA/branch/master/graph/badge.svg?token=F303UDEWDJ)](https://codecov.io/gh/ctlab/GADMA) [![PyPI - Downloads](https://img.shields.io/pypi/dm/gadma)](https://pypistats.org/packages/gadma)\n\nWelcome to GADMA v2!\n\nGADMA implements methods for automatic inference of the joint demographic history of multiple populations from the genetic data.\n\n**GADMA is a command-line tool**. Basic pipeline presents a series of launches of the global search algorithm followed by the local search optimization.\n\nGADMA provides two types of demographic inference: 1) for user-specified model of demographic history or a custom model, 2) automatic inference for the model with specified structure (up to three populations, see more [here](https://gadma.readthedocs.io/en/latest/user_manual/set_model/set_model_struct.html)).\n\nGADMA provides choice of several engines of demographic inference. This list will be extended in the future. Available engines and maximum number of supported populations for custom model:\n\n* [\u2202a\u2202i](https://bitbucket.org/gutenkunstlab/dadi/) (up to 5 populations)\n* [*moments*](https://bitbucket.org/simongravel/moments/) (up to 5 populations)\n* [*momi2*](https://github.com/popgenmethods/momi2/) (up to \u221e populations)\n* [*momentsLD*](https://bitbucket.org/simongravel/moments/) - extenstion of *moments* (up to 5 populations)\n\nMore information about engines see [here](https://gadma.readthedocs.io/en/latest/user_manual/set_engine.html).\n\nGADMA features various optimization methods ([global](https://gadma.readthedocs.io/en/latest/api/gadma.optimizers.html#global-optimizers-list) and [local](https://gadma.readthedocs.io/en/latest/api/gadma.optimizers.html#local-optimizers-list) search algorithms) which may be used for [any general optimization problem](https://gadma.readthedocs.io/en/latest/api_examples/optimization_example.html).\n\nTwo global search algorithms are supported in GADMA:\n\n* Genetic algorithm \u2014 the most common choice of optimization,\n* Bayesian optimization \u2014 for demographic inference with time-consuming evaluations, e.g. for four and five populations using *moments* or \u2202a\u2202i.\n\nGADMA is developed in Computer Technologies laboratory at ITMO University under the supervision of [Vladimir Ulyantsev](https://ulyantsev.com/) and Pavel Dobrynin. The principal maintainer is [Ekaterina Noskova](http://enoskova.me/) (ekaterina.e.noskova@gmail.com)\n\n**GADMA is now of version 2!** See [Changelog](https://gadma.readthedocs.io/en/latest/changelogs.html).\n\n### Documentation\n\nPlease see [documentation](https://gadma.readthedocs.io) for more information including installation instructions, usage, examples and API.\n\n## Getting help\n\n[F.A.Q.](https://gadma.readthedocs.io/en/latest/faq.html)\n\nPlease don't be afraid to contact me for different problems and offers via email ekaterina.e.noskova@gmail.com. I will be glad to answer all questions.\n\nAlso you are always welcome to [create an issue](https://github.com/ctlab/GADMA/issues) on the GitHub page of GADMA with your question.\n\n## Citations\n\nPlease see full list of citations in [documentation](https://gadma.readthedocs.io/en/latest/citations.html).\n\nIf you use GADMA in your research please cite:\n\nEkaterina Noskova, Vladimir Ulyantsev, Klaus-Peter Koepfli, Stephen J O\u2019Brien, Pavel Dobrynin, GADMA: Genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data, *GigaScience*, Volume 9, Issue 3, March 2020, giaa005, <https://doi.org/10.1093/gigascience/giaa005>\n\nIf you use GADMA2 in your research please cite:\n\nEkaterina Noskova, Nikita Abramov, Stanislav Iliutkin, Anton Sidorin, Pavel Dobrynin, and Vladimir Ulyantsev, GADMA2: more efficient and flexible demographic inference from genetic data, *GigaScience*, Volume 12, August 2023, giad059, <https://doi.org/10.1093/gigascience/giad059>\n\nIf you use Bayesian optimization please cite:\n\nEkaterina Noskova and Viacheslav Borovitskiy, Bayesian optimization for demographic inference, *G3 Genes|Genomes|Genetics*, Volume 13, Issue 7, July 2023, jkad080, <https://doi.org/10.1093/g3journal/jkad080>\n",
    "bugtrack_url": null,
    "license": "GNU GPLv3+",
    "summary": "A tool for easy-to-use demographic inference",
    "version": "2.0.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/ctlab/GADMA/issues",
        "Documentation": "https://gadma.readthedocs.io/en/stable/",
        "Homepage": "https://github.com/ctlab/GADMA",
        "Source Code": "https://github.com/ctlab/GADMA"
    },
    "split_keywords": [
        "demographic history",
        " demographic inference",
        " evolution",
        " population genetics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a76666e6fb823b8a74360fba23b39d4542a66a2037b420ff944e2bac20dc18c5",
                "md5": "07394d51b745a3facc346b728cc9b530",
                "sha256": "b4827866463dec2d0adf4a28b44e96338ac06caf98eef1a839b4b3728d3f8657"
            },
            "downloads": -1,
            "filename": "gadma-2.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "07394d51b745a3facc346b728cc9b530",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 213582,
            "upload_time": "2024-11-06T16:25:48",
            "upload_time_iso_8601": "2024-11-06T16:25:48.705631Z",
            "url": "https://files.pythonhosted.org/packages/a7/66/66e6fb823b8a74360fba23b39d4542a66a2037b420ff944e2bac20dc18c5/gadma-2.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4a9f92ec8e091d58d0b5133ce8fec0fc4a45c5c937ab3fec4feb7bbdba7ad691",
                "md5": "a55bed908051520329d75cf5d11c9e5b",
                "sha256": "f7b610d0d347e97afb30e6b5f9a814c19e479203838de31aa2e44f7427073db5"
            },
            "downloads": -1,
            "filename": "gadma-2.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a55bed908051520329d75cf5d11c9e5b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 65203598,
            "upload_time": "2024-11-06T16:25:51",
            "upload_time_iso_8601": "2024-11-06T16:25:51.363407Z",
            "url": "https://files.pythonhosted.org/packages/4a/9f/92ec8e091d58d0b5133ce8fec0fc4a45c5c937ab3fec4feb7bbdba7ad691/gadma-2.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-06 16:25:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ctlab",
    "github_project": "GADMA",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "gadma"
}
        
Elapsed time: 0.48795s