galaxygrad


Namegalaxygrad JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryDiffusion model for galaxy generation
upload_time2025-02-13 20:11:29
maintainerNone
docs_urlNone
authorMatt Sampson
requires_pythonNone
licenseNone
keywords python diffusion
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Contains 4 generative diffusion models ScoreNet32 and ScoreNet64 for both the HSC and ZTF surveys. These are used to return the gradients of an arbitrary image with respect to a prior distribution of individual artifact free galaxy models. Current functions include ScoreNetXX(image) returns gradients as stated. Data transformatons are now done inside the package.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "galaxygrad",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, diffusion",
    "author": "Matt Sampson",
    "author_email": "matt.sampson@princeton.edu",
    "download_url": "https://files.pythonhosted.org/packages/d6/1b/1845b0217f60597d549871a199f7795c17a56d605c033d28ba089604e511/galaxygrad-0.2.1.tar.gz",
    "platform": null,
    "description": "Contains 4 generative diffusion models ScoreNet32 and ScoreNet64 for both the HSC and ZTF surveys. These are used to return the gradients of an arbitrary image with respect to a prior distribution of individual artifact free galaxy models. Current functions include ScoreNetXX(image) returns gradients as stated. Data transformatons are now done inside the package.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Diffusion model for galaxy generation",
    "version": "0.2.1",
    "project_urls": null,
    "split_keywords": [
        "python",
        " diffusion"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3674ac9e3baaefb8457a4ac709860ebf72c30cf057ca6903616a408741072ae3",
                "md5": "a7f6c9e2b50caa3ef4d974d9c268881c",
                "sha256": "56fd8f02de3b025e87f690a494014371391894f2288356288068f9f5e90d8a97"
            },
            "downloads": -1,
            "filename": "galaxygrad-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a7f6c9e2b50caa3ef4d974d9c268881c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 55732937,
            "upload_time": "2025-02-13T20:11:07",
            "upload_time_iso_8601": "2025-02-13T20:11:07.320674Z",
            "url": "https://files.pythonhosted.org/packages/36/74/ac9e3baaefb8457a4ac709860ebf72c30cf057ca6903616a408741072ae3/galaxygrad-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d61b1845b0217f60597d549871a199f7795c17a56d605c033d28ba089604e511",
                "md5": "7410b4343546d194aba36a11389e93b1",
                "sha256": "3bf36cf8ea46364360e4a513c6e72445faa6f7f7e489b92cf058b5d2e631496b"
            },
            "downloads": -1,
            "filename": "galaxygrad-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7410b4343546d194aba36a11389e93b1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 55738046,
            "upload_time": "2025-02-13T20:11:29",
            "upload_time_iso_8601": "2025-02-13T20:11:29.650007Z",
            "url": "https://files.pythonhosted.org/packages/d6/1b/1845b0217f60597d549871a199f7795c17a56d605c033d28ba089604e511/galaxygrad-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-13 20:11:29",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "galaxygrad"
}
        
Elapsed time: 0.59666s