Name | galaxygrad JSON |
Version |
0.2.1
JSON |
| download |
home_page | None |
Summary | Diffusion model for galaxy generation |
upload_time | 2025-02-13 20:11:29 |
maintainer | None |
docs_url | None |
author | Matt Sampson |
requires_python | None |
license | None |
keywords |
python
diffusion
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
Contains 4 generative diffusion models ScoreNet32 and ScoreNet64 for both the HSC and ZTF surveys. These are used to return the gradients of an arbitrary image with respect to a prior distribution of individual artifact free galaxy models. Current functions include ScoreNetXX(image) returns gradients as stated. Data transformatons are now done inside the package.
Raw data
{
"_id": null,
"home_page": null,
"name": "galaxygrad",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "python, diffusion",
"author": "Matt Sampson",
"author_email": "matt.sampson@princeton.edu",
"download_url": "https://files.pythonhosted.org/packages/d6/1b/1845b0217f60597d549871a199f7795c17a56d605c033d28ba089604e511/galaxygrad-0.2.1.tar.gz",
"platform": null,
"description": "Contains 4 generative diffusion models ScoreNet32 and ScoreNet64 for both the HSC and ZTF surveys. These are used to return the gradients of an arbitrary image with respect to a prior distribution of individual artifact free galaxy models. Current functions include ScoreNetXX(image) returns gradients as stated. Data transformatons are now done inside the package.\n",
"bugtrack_url": null,
"license": null,
"summary": "Diffusion model for galaxy generation",
"version": "0.2.1",
"project_urls": null,
"split_keywords": [
"python",
" diffusion"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3674ac9e3baaefb8457a4ac709860ebf72c30cf057ca6903616a408741072ae3",
"md5": "a7f6c9e2b50caa3ef4d974d9c268881c",
"sha256": "56fd8f02de3b025e87f690a494014371391894f2288356288068f9f5e90d8a97"
},
"downloads": -1,
"filename": "galaxygrad-0.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a7f6c9e2b50caa3ef4d974d9c268881c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 55732937,
"upload_time": "2025-02-13T20:11:07",
"upload_time_iso_8601": "2025-02-13T20:11:07.320674Z",
"url": "https://files.pythonhosted.org/packages/36/74/ac9e3baaefb8457a4ac709860ebf72c30cf057ca6903616a408741072ae3/galaxygrad-0.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d61b1845b0217f60597d549871a199f7795c17a56d605c033d28ba089604e511",
"md5": "7410b4343546d194aba36a11389e93b1",
"sha256": "3bf36cf8ea46364360e4a513c6e72445faa6f7f7e489b92cf058b5d2e631496b"
},
"downloads": -1,
"filename": "galaxygrad-0.2.1.tar.gz",
"has_sig": false,
"md5_digest": "7410b4343546d194aba36a11389e93b1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 55738046,
"upload_time": "2025-02-13T20:11:29",
"upload_time_iso_8601": "2025-02-13T20:11:29.650007Z",
"url": "https://files.pythonhosted.org/packages/d6/1b/1845b0217f60597d549871a199f7795c17a56d605c033d28ba089604e511/galaxygrad-0.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-13 20:11:29",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "galaxygrad"
}