Name | gasp-ssfp JSON |
Version |
0.0.2
JSON |
| download |
home_page | None |
Summary | Generation of Arbitary Spectral Profiles using bSSFp MRI |
upload_time | 2024-12-17 01:31:11 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
gasp
mri
ssfp
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# GASP: Generation of Arbitrary Spectral Profiles
## Overview
GASP (Generation of Arbitrary Spectral Profiles) is a Python library for simulating and analyzing MRI sequences, particularly focused on balanced Steady-State Free Precession (bSSFP) and spectral shaping techniques. This project provides tools for simulating MRI signals, generating phantoms, and applying the GASP method to achieve desired spectral profiles.
## Features
- Simulation of bSSFP sequences
- Generation of various phantom types (e.g., Shepp-Logan, circles, blocks)
- Implementation of the GASP method for spectral shaping
- Tools for analyzing and visualizing MRI data
- Support for different tissue types and their relaxation properties
## Development
This project requires python 3.8+ and has the following dependancies:
`numpy matplotlib scikit-image seaborn pymapvbvd jupyterlab gdown scipy`
To setup a local python enviroment with conda:
Create a new conda environment from scatch
> ```
> conda create -n gasp python=3.8
> conda activate gasp
> ```
> Then install packages with pip:
> ```
> pip install numpy matplotlib scikit-image seaborn pymapvbvd jupyterlab gdown scipy
> ```
## Usage
Here's a basic example of how to use the GASP simulation:
```python
from gasp import simulation, responses
# Set up simulation parameters
width, height = 256, 256
npcs = 16
TRs = [5e-3, 10e-3, 20e-3]
alpha = np.deg2rad(60)
gradient = 2 * np.pi
# Create a desired spectral profile
D = responses.gaussian(width, bw=0.2, shift=0)
# Simulate GASP
Ic, M, An = simulation.simulate_gasp(D, width, height, npcs, TRs, alpha, gradient)
# Visualize results
simulation.view_gasp_results(Ic, M, D)
```
## Modules
- `analysis.py`: Contains functions for analyzing GASP results and Dixon methods
- `dataloader.py`: Handles loading of raw MRI data
- `dataset.py`: Provides functions to load specific datasets
- `gasp.py`: Core implementation of the GASP method
- `phantom.py`: Functions for generating various phantom types
- `responses.py`: Implements different spectral response functions
- `simulation.py`: Main simulation routines for bSSFP and GASP
- `ssfp.py`: Implementation of Steady-State Free Precession signal equations
- `tissue.py`: Defines tissue properties and generates tissue phantoms
- `view.py`: Visualization tools for 3D data
Raw data
{
"_id": null,
"home_page": null,
"name": "gasp-ssfp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "gasp, mri, ssfp",
"author": null,
"author_email": "Michael Mendoza <askmichaelmendoza@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ef/b7/80ad7a3fa838e4a96c9b696bcd958f8b63ed161076d21fd06daac0b4afec/gasp_ssfp-0.0.2.tar.gz",
"platform": null,
"description": "\n# GASP: Generation of Arbitrary Spectral Profiles\n\n## Overview\n\nGASP (Generation of Arbitrary Spectral Profiles) is a Python library for simulating and analyzing MRI sequences, particularly focused on balanced Steady-State Free Precession (bSSFP) and spectral shaping techniques. This project provides tools for simulating MRI signals, generating phantoms, and applying the GASP method to achieve desired spectral profiles.\n\n## Features\n\n- Simulation of bSSFP sequences\n- Generation of various phantom types (e.g., Shepp-Logan, circles, blocks)\n- Implementation of the GASP method for spectral shaping\n- Tools for analyzing and visualizing MRI data\n- Support for different tissue types and their relaxation properties\n\n## Development\n\nThis project requires python 3.8+ and has the following dependancies: \n`numpy matplotlib scikit-image seaborn pymapvbvd jupyterlab gdown scipy`\n\nTo setup a local python enviroment with conda:\n\nCreate a new conda environment from scatch \n> ```\n> conda create -n gasp python=3.8 \n> conda activate gasp\n> ```\n> Then install packages with pip:\n> ```\n> pip install numpy matplotlib scikit-image seaborn pymapvbvd jupyterlab gdown scipy\n> ```\n\n## Usage\n\nHere's a basic example of how to use the GASP simulation:\n\n```python\nfrom gasp import simulation, responses\n\n# Set up simulation parameters\nwidth, height = 256, 256\nnpcs = 16\nTRs = [5e-3, 10e-3, 20e-3]\nalpha = np.deg2rad(60)\ngradient = 2 * np.pi\n\n# Create a desired spectral profile\nD = responses.gaussian(width, bw=0.2, shift=0)\n\n# Simulate GASP\nIc, M, An = simulation.simulate_gasp(D, width, height, npcs, TRs, alpha, gradient)\n\n# Visualize results\nsimulation.view_gasp_results(Ic, M, D)\n```\n\n## Modules\n\n- `analysis.py`: Contains functions for analyzing GASP results and Dixon methods\n- `dataloader.py`: Handles loading of raw MRI data\n- `dataset.py`: Provides functions to load specific datasets\n- `gasp.py`: Core implementation of the GASP method\n- `phantom.py`: Functions for generating various phantom types\n- `responses.py`: Implements different spectral response functions\n- `simulation.py`: Main simulation routines for bSSFP and GASP\n- `ssfp.py`: Implementation of Steady-State Free Precession signal equations\n- `tissue.py`: Defines tissue properties and generates tissue phantoms\n- `view.py`: Visualization tools for 3D data\n",
"bugtrack_url": null,
"license": null,
"summary": "Generation of Arbitary Spectral Profiles using bSSFp MRI",
"version": "0.0.2",
"project_urls": {
"Bug Tracker": "https://github.com/michaelmendoza/gasp/issues",
"Homepage": "https://github.com/michaelmendoza/gasp"
},
"split_keywords": [
"gasp",
" mri",
" ssfp"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "296522b26a63af48d62a7478dc817bd47846bac42952f903f7b5d8ea9e1af012",
"md5": "37adddd9104041fdeff8acbdb62ae322",
"sha256": "ef13b3e9e82c6cf01b7334955d398f4f275c93e1c5ffc8e2b082981b9e0f397c"
},
"downloads": -1,
"filename": "gasp_ssfp-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "37adddd9104041fdeff8acbdb62ae322",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 26162,
"upload_time": "2024-12-17T01:31:08",
"upload_time_iso_8601": "2024-12-17T01:31:08.780348Z",
"url": "https://files.pythonhosted.org/packages/29/65/22b26a63af48d62a7478dc817bd47846bac42952f903f7b5d8ea9e1af012/gasp_ssfp-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "efb780ad7a3fa838e4a96c9b696bcd958f8b63ed161076d21fd06daac0b4afec",
"md5": "1afa348417add4f29753586390d9811e",
"sha256": "94fe87bce0f803bebc7c45a5ae3316560d164574433dfa82907b0a0d29ba36c9"
},
"downloads": -1,
"filename": "gasp_ssfp-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "1afa348417add4f29753586390d9811e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 19707,
"upload_time": "2024-12-17T01:31:11",
"upload_time_iso_8601": "2024-12-17T01:31:11.086988Z",
"url": "https://files.pythonhosted.org/packages/ef/b7/80ad7a3fa838e4a96c9b696bcd958f8b63ed161076d21fd06daac0b4afec/gasp_ssfp-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-17 01:31:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "michaelmendoza",
"github_project": "gasp",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "gasp-ssfp"
}