gasp-ssfp


Namegasp-ssfp JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummaryGeneration of Arbitary Spectral Profiles using bSSFp MRI
upload_time2024-12-17 01:31:11
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords gasp mri ssfp
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# GASP: Generation of Arbitrary Spectral Profiles

## Overview

GASP (Generation of Arbitrary Spectral Profiles) is a Python library for simulating and analyzing MRI sequences, particularly focused on balanced Steady-State Free Precession (bSSFP) and spectral shaping techniques. This project provides tools for simulating MRI signals, generating phantoms, and applying the GASP method to achieve desired spectral profiles.

## Features

- Simulation of bSSFP sequences
- Generation of various phantom types (e.g., Shepp-Logan, circles, blocks)
- Implementation of the GASP method for spectral shaping
- Tools for analyzing and visualizing MRI data
- Support for different tissue types and their relaxation properties

## Development

This project requires python 3.8+ and has the following dependancies: 
`numpy matplotlib scikit-image seaborn pymapvbvd jupyterlab gdown scipy`

To setup a local python enviroment with conda:

Create a new conda environment from scatch 
> ```
> conda create -n gasp python=3.8 
> conda activate gasp
> ```
> Then install packages with pip:
> ```
> pip install numpy matplotlib scikit-image seaborn pymapvbvd jupyterlab gdown scipy
> ```

## Usage

Here's a basic example of how to use the GASP simulation:

```python
from gasp import simulation, responses

# Set up simulation parameters
width, height = 256, 256
npcs = 16
TRs = [5e-3, 10e-3, 20e-3]
alpha = np.deg2rad(60)
gradient = 2 * np.pi

# Create a desired spectral profile
D = responses.gaussian(width, bw=0.2, shift=0)

# Simulate GASP
Ic, M, An = simulation.simulate_gasp(D, width, height, npcs, TRs, alpha, gradient)

# Visualize results
simulation.view_gasp_results(Ic, M, D)
```

## Modules

- `analysis.py`: Contains functions for analyzing GASP results and Dixon methods
- `dataloader.py`: Handles loading of raw MRI data
- `dataset.py`: Provides functions to load specific datasets
- `gasp.py`: Core implementation of the GASP method
- `phantom.py`: Functions for generating various phantom types
- `responses.py`: Implements different spectral response functions
- `simulation.py`: Main simulation routines for bSSFP and GASP
- `ssfp.py`: Implementation of Steady-State Free Precession signal equations
- `tissue.py`: Defines tissue properties and generates tissue phantoms
- `view.py`: Visualization tools for 3D data

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "gasp-ssfp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "gasp, mri, ssfp",
    "author": null,
    "author_email": "Michael Mendoza <askmichaelmendoza@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ef/b7/80ad7a3fa838e4a96c9b696bcd958f8b63ed161076d21fd06daac0b4afec/gasp_ssfp-0.0.2.tar.gz",
    "platform": null,
    "description": "\n# GASP: Generation of Arbitrary Spectral Profiles\n\n## Overview\n\nGASP (Generation of Arbitrary Spectral Profiles) is a Python library for simulating and analyzing MRI sequences, particularly focused on balanced Steady-State Free Precession (bSSFP) and spectral shaping techniques. This project provides tools for simulating MRI signals, generating phantoms, and applying the GASP method to achieve desired spectral profiles.\n\n## Features\n\n- Simulation of bSSFP sequences\n- Generation of various phantom types (e.g., Shepp-Logan, circles, blocks)\n- Implementation of the GASP method for spectral shaping\n- Tools for analyzing and visualizing MRI data\n- Support for different tissue types and their relaxation properties\n\n## Development\n\nThis project requires python 3.8+ and has the following dependancies: \n`numpy matplotlib scikit-image seaborn pymapvbvd jupyterlab gdown scipy`\n\nTo setup a local python enviroment with conda:\n\nCreate a new conda environment from scatch \n> ```\n> conda create -n gasp python=3.8 \n> conda activate gasp\n> ```\n> Then install packages with pip:\n> ```\n> pip install numpy matplotlib scikit-image seaborn pymapvbvd jupyterlab gdown scipy\n> ```\n\n## Usage\n\nHere's a basic example of how to use the GASP simulation:\n\n```python\nfrom gasp import simulation, responses\n\n# Set up simulation parameters\nwidth, height = 256, 256\nnpcs = 16\nTRs = [5e-3, 10e-3, 20e-3]\nalpha = np.deg2rad(60)\ngradient = 2 * np.pi\n\n# Create a desired spectral profile\nD = responses.gaussian(width, bw=0.2, shift=0)\n\n# Simulate GASP\nIc, M, An = simulation.simulate_gasp(D, width, height, npcs, TRs, alpha, gradient)\n\n# Visualize results\nsimulation.view_gasp_results(Ic, M, D)\n```\n\n## Modules\n\n- `analysis.py`: Contains functions for analyzing GASP results and Dixon methods\n- `dataloader.py`: Handles loading of raw MRI data\n- `dataset.py`: Provides functions to load specific datasets\n- `gasp.py`: Core implementation of the GASP method\n- `phantom.py`: Functions for generating various phantom types\n- `responses.py`: Implements different spectral response functions\n- `simulation.py`: Main simulation routines for bSSFP and GASP\n- `ssfp.py`: Implementation of Steady-State Free Precession signal equations\n- `tissue.py`: Defines tissue properties and generates tissue phantoms\n- `view.py`: Visualization tools for 3D data\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Generation of Arbitary Spectral Profiles using bSSFp MRI",
    "version": "0.0.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/michaelmendoza/gasp/issues",
        "Homepage": "https://github.com/michaelmendoza/gasp"
    },
    "split_keywords": [
        "gasp",
        " mri",
        " ssfp"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "296522b26a63af48d62a7478dc817bd47846bac42952f903f7b5d8ea9e1af012",
                "md5": "37adddd9104041fdeff8acbdb62ae322",
                "sha256": "ef13b3e9e82c6cf01b7334955d398f4f275c93e1c5ffc8e2b082981b9e0f397c"
            },
            "downloads": -1,
            "filename": "gasp_ssfp-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "37adddd9104041fdeff8acbdb62ae322",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 26162,
            "upload_time": "2024-12-17T01:31:08",
            "upload_time_iso_8601": "2024-12-17T01:31:08.780348Z",
            "url": "https://files.pythonhosted.org/packages/29/65/22b26a63af48d62a7478dc817bd47846bac42952f903f7b5d8ea9e1af012/gasp_ssfp-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "efb780ad7a3fa838e4a96c9b696bcd958f8b63ed161076d21fd06daac0b4afec",
                "md5": "1afa348417add4f29753586390d9811e",
                "sha256": "94fe87bce0f803bebc7c45a5ae3316560d164574433dfa82907b0a0d29ba36c9"
            },
            "downloads": -1,
            "filename": "gasp_ssfp-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "1afa348417add4f29753586390d9811e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 19707,
            "upload_time": "2024-12-17T01:31:11",
            "upload_time_iso_8601": "2024-12-17T01:31:11.086988Z",
            "url": "https://files.pythonhosted.org/packages/ef/b7/80ad7a3fa838e4a96c9b696bcd958f8b63ed161076d21fd06daac0b4afec/gasp_ssfp-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-17 01:31:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "michaelmendoza",
    "github_project": "gasp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "gasp-ssfp"
}
        
Elapsed time: 3.27752s