gaussFilter


NamegaussFilter JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/divagarn/gaussFilter.git
SummaryA package for applying Gaussian filter to images
upload_time2023-07-06 19:04:23
maintainer
docs_urlNone
authorDivagar N
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # gaussFilter

gaussFilter is a Python package that provides a function for applying a Gaussian filter to images using OpenCV.

## Installation

You can install `gaussFilter` using pip:

```bash
pip install gaussFilter
```


## Usage

```python
import cv2
from gaussFilter import apply_gaussian_filter

# Load an image
image = cv2.imread('path/to/your/image.jpg')

# Apply the Gaussian filter with desired sigma and kernel size
filtered_image = apply_gaussian_filter(image, sigma=1.5, kernel_size=5)

# Display the original and filtered images
cv2.imshow('Original Image', image)
cv2.imshow('Filtered Image', filtered_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

##Contributing

Contributions are welcome! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request on the GitHub repository.

## License

This package is distributed under the MIT License. See the [LICENSE](LICENSE) file for more information.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/divagarn/gaussFilter.git",
    "name": "gaussFilter",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Divagar N",
    "author_email": "divagar2kn@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/52/5d/ea41dd6eaf5eb172a807563baccd3e6ab4c46f6a488bf041c2ee9357162b/gaussFilter-1.0.1.tar.gz",
    "platform": null,
    "description": "# gaussFilter\n\ngaussFilter is a Python package that provides a function for applying a Gaussian filter to images using OpenCV.\n\n## Installation\n\nYou can install `gaussFilter` using pip:\n\n```bash\npip install gaussFilter\n```\n\n\n## Usage\n\n```python\nimport cv2\nfrom gaussFilter import apply_gaussian_filter\n\n# Load an image\nimage = cv2.imread('path/to/your/image.jpg')\n\n# Apply the Gaussian filter with desired sigma and kernel size\nfiltered_image = apply_gaussian_filter(image, sigma=1.5, kernel_size=5)\n\n# Display the original and filtered images\ncv2.imshow('Original Image', image)\ncv2.imshow('Filtered Image', filtered_image)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n```\n\n##Contributing\n\nContributions are welcome! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request on the GitHub repository.\n\n## License\n\nThis package is distributed under the MIT License. See the [LICENSE](LICENSE) file for more information.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A package for applying Gaussian filter to images",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/divagarn/gaussFilter.git"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e288b26ead5461c5cb3f5c00362ef8ae2d5138db73f40eba91e3cc284237c7a5",
                "md5": "4c38fcfd7dbf89ab6eff00f96adb01bb",
                "sha256": "6af3621f2792eba036470bc754d59dbc5fb2a71e9a8497103407088570c0f106"
            },
            "downloads": -1,
            "filename": "gaussFilter-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4c38fcfd7dbf89ab6eff00f96adb01bb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3453,
            "upload_time": "2023-07-06T19:04:21",
            "upload_time_iso_8601": "2023-07-06T19:04:21.989695Z",
            "url": "https://files.pythonhosted.org/packages/e2/88/b26ead5461c5cb3f5c00362ef8ae2d5138db73f40eba91e3cc284237c7a5/gaussFilter-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "525dea41dd6eaf5eb172a807563baccd3e6ab4c46f6a488bf041c2ee9357162b",
                "md5": "cac724940105f3248184a4c89c285982",
                "sha256": "fc99a5558c8e2640f1ecb962ec3fb459ef4c43228b5e2433b570cd15a174de9d"
            },
            "downloads": -1,
            "filename": "gaussFilter-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "cac724940105f3248184a4c89c285982",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3043,
            "upload_time": "2023-07-06T19:04:23",
            "upload_time_iso_8601": "2023-07-06T19:04:23.937061Z",
            "url": "https://files.pythonhosted.org/packages/52/5d/ea41dd6eaf5eb172a807563baccd3e6ab4c46f6a488bf041c2ee9357162b/gaussFilter-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-06 19:04:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "divagarn",
    "github_project": "gaussFilter",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "gaussfilter"
}
        
Elapsed time: 0.44738s