gaussianprocessderivatives


Namegaussianprocessderivatives JSON
Version 0.1.64 PyPI version JSON
download
home_page
SummaryUses Gaussian processes to smooth data and estimate first- and second-order derivatives
upload_time2023-01-30 16:33:33
maintainer
docs_urlNone
authorPeter Swain
requires_python>=3.8,<3.11
licenseMIT
keywords gaussian process derivative
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            A Python package for smoothing data and estimating first- and second-order derivatives and their errors.

Covariance functions can either be linear, squared exponential, neural network-like, or squared exponential with a linear trend.

An example workflow to smooth data (x, y), where the columns of y are replicates, is

>>> import gaussian process as gp
>>> g= gp.maternGP({0: (-4, 4), 1: (-4, 4), 2: (-4, -2)}, x, y)

The dictionary sets bounds on the hyperparameters, so that 0: (-4, 4) means that the bounds on the first hyperparameter are 1e-4 and 1e4.

>>> g.info()

explains what each hyperparameter does.

Once g is instantiated,

>>> g.findhyperparameters()
>>> g.results()
>>> g.predict(x, derivs= 2)

optimises the hyperparameters and determines a smoothed version of the data and estimates the derivatives.

The results can be visualised by

>>> import matplotlib.pylab as plt
>>> plt.figure()
>>> plt.subplot(2,1,1)
>>> g.sketch('.')
>>> plt.subplot(2,1,2)
>>> g.sketch('.', derivs= 1)
>>> plt.show()

and are available as g.f and g.fvar (smoothed data and error), g.df and g.dfvar (estimate of dy/dx), and g.ddf and g.ddfvar (estimate of d2y/dx2).

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "gaussianprocessderivatives",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<3.11",
    "maintainer_email": "",
    "keywords": "gaussian process,derivative",
    "author": "Peter Swain",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/3b/b1/0ff186b5a67ea870b5accc07a7c02319846c5bbd41a02ce89de5dede1da1/gaussianprocessderivatives-0.1.64.tar.gz",
    "platform": null,
    "description": "A Python package for smoothing data and estimating first- and second-order derivatives and their errors.\n\nCovariance functions can either be linear, squared exponential, neural network-like, or squared exponential with a linear trend.\n\nAn example workflow to smooth data (x, y), where the columns of y are replicates, is\n\n>>> import gaussian process as gp\n>>> g= gp.maternGP({0: (-4, 4), 1: (-4, 4), 2: (-4, -2)}, x, y)\n\nThe dictionary sets bounds on the hyperparameters, so that 0: (-4, 4) means that the bounds on the first hyperparameter are 1e-4 and 1e4.\n\n>>> g.info()\n\nexplains what each hyperparameter does.\n\nOnce g is instantiated,\n\n>>> g.findhyperparameters()\n>>> g.results()\n>>> g.predict(x, derivs= 2)\n\noptimises the hyperparameters and determines a smoothed version of the data and estimates the derivatives.\n\nThe results can be visualised by\n\n>>> import matplotlib.pylab as plt\n>>> plt.figure()\n>>> plt.subplot(2,1,1)\n>>> g.sketch('.')\n>>> plt.subplot(2,1,2)\n>>> g.sketch('.', derivs= 1)\n>>> plt.show()\n\nand are available as g.f and g.fvar (smoothed data and error), g.df and g.dfvar (estimate of dy/dx), and g.ddf and g.ddfvar (estimate of d2y/dx2).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Uses Gaussian processes to smooth data and estimate first- and second-order derivatives",
    "version": "0.1.64",
    "split_keywords": [
        "gaussian process",
        "derivative"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "71a0ebd8ae223211b31fe4bad2481af2ef4edc72d509ed0c419504e467f59182",
                "md5": "6884a96696a380aeaf020e684313f3a2",
                "sha256": "c03d8ae2b98abd0e7d2476d2451b143ad6339ec05caeb4e6940096d631ff6115"
            },
            "downloads": -1,
            "filename": "gaussianprocessderivatives-0.1.64-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6884a96696a380aeaf020e684313f3a2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<3.11",
            "size": 16064,
            "upload_time": "2023-01-30T16:33:31",
            "upload_time_iso_8601": "2023-01-30T16:33:31.532728Z",
            "url": "https://files.pythonhosted.org/packages/71/a0/ebd8ae223211b31fe4bad2481af2ef4edc72d509ed0c419504e467f59182/gaussianprocessderivatives-0.1.64-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3bb10ff186b5a67ea870b5accc07a7c02319846c5bbd41a02ce89de5dede1da1",
                "md5": "43b06f3729f74d44d9005f837dfa2e9e",
                "sha256": "0696a05414d7ef01d96ebc88891d3f8917ca16e4f76411ad07e6357da539f826"
            },
            "downloads": -1,
            "filename": "gaussianprocessderivatives-0.1.64.tar.gz",
            "has_sig": false,
            "md5_digest": "43b06f3729f74d44d9005f837dfa2e9e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<3.11",
            "size": 11497,
            "upload_time": "2023-01-30T16:33:33",
            "upload_time_iso_8601": "2023-01-30T16:33:33.459673Z",
            "url": "https://files.pythonhosted.org/packages/3b/b1/0ff186b5a67ea870b5accc07a7c02319846c5bbd41a02ce89de5dede1da1/gaussianprocessderivatives-0.1.64.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-30 16:33:33",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "gaussianprocessderivatives"
}
        
Elapsed time: 0.05158s