[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# GeidiPrime
This is an extremely experimental Transformer architecture with Macaron like FFNs with local attention. Perhap's we can add the visual expert from Zeta and make it multi-modal!
# Install
## Usage
```python
import torch
from geidi_prime.model import GeidiPrimeTransformer
model = GeidiPrimeTransformer(
dim=4096,
depth=6,
heads=8,
num_tokens=20000,
)
x = torch.randint(0, 20000, (1, 4096))
out = model(x)
print(out.shape)
```
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/GiediPrime",
"name": "geidiprime",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/2e/7c/8782659bc7836803167a41fd12964ba0610c4dc7ae2a2861b7e8a337dee8/geidiprime-0.0.1.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# GeidiPrime\nThis is an extremely experimental Transformer architecture with Macaron like FFNs with local attention. Perhap's we can add the visual expert from Zeta and make it multi-modal!\n\n\n# Install\n\n## Usage\n```python\nimport torch\nfrom geidi_prime.model import GeidiPrimeTransformer\n\nmodel = GeidiPrimeTransformer(\n dim=4096,\n depth=6,\n heads=8,\n num_tokens=20000,\n)\n\nx = torch.randint(0, 20000, (1, 4096))\n\nout = model(x)\nprint(out.shape)\n\n```\n\n\n\n# License\nMIT\n\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.1",
"project_urls": {
"Documentation": "https://github.com/kyegomez/GiediPrime",
"Homepage": "https://github.com/kyegomez/GiediPrime",
"Repository": "https://github.com/kyegomez/GiediPrime"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ff07c467733196302abf72c910fff56e5cf7927fbad9da34dd7aa432f31e7146",
"md5": "c1ce47a00a657655b6c22ab718a920ff",
"sha256": "9a71e972687727f5c544e8fd7a88c48cba4fa69f297040d4e64043b1dc57c0df"
},
"downloads": -1,
"filename": "geidiprime-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c1ce47a00a657655b6c22ab718a920ff",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<4.0",
"size": 3783,
"upload_time": "2023-11-30T07:37:00",
"upload_time_iso_8601": "2023-11-30T07:37:00.918080Z",
"url": "https://files.pythonhosted.org/packages/ff/07/c467733196302abf72c910fff56e5cf7927fbad9da34dd7aa432f31e7146/geidiprime-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2e7c8782659bc7836803167a41fd12964ba0610c4dc7ae2a2861b7e8a337dee8",
"md5": "8088a1df2b17c51f26e08ca6c81216c0",
"sha256": "17627fb93375e8057383acd3495e15941e2d30c2550589b6a2b33b8ac026a98e"
},
"downloads": -1,
"filename": "geidiprime-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "8088a1df2b17c51f26e08ca6c81216c0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<4.0",
"size": 3888,
"upload_time": "2023-11-30T07:37:03",
"upload_time_iso_8601": "2023-11-30T07:37:03.127348Z",
"url": "https://files.pythonhosted.org/packages/2e/7c/8782659bc7836803167a41fd12964ba0610c4dc7ae2a2861b7e8a337dee8/geidiprime-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-30 07:37:03",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "GiediPrime",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "geidiprime"
}