gemlib


Namegemlib JSON
Version 0.12.1 PyPI version JSON
download
home_pagehttps://gem-epidemics.gitlab.io/gemlib
SummaryGEMlib scientific compute library for epidemic modelling
upload_time2024-11-12 05:27:28
maintainerJessica Bridgen
docs_urlNone
authorChris Jewell
requires_python<3.13.0,>=3.10.0
licenseMIT
keywords epidemic bayesian inference infectious disease model probabilistic programming
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            `gemlib` scientific compute library
===========================================

`gemlib` is a scientific compute library build for epidemic 
analysis.  It forms a component of the [GEM](http://fhm-chicas-code.lancs.ac.uk/GEM/gem)
project aimed at developing a reusable domain-specific modelling
language for epidemic inference and simulation.

`gemlib` is heavily based on [Tensorflow Probability](https://www.tensorflow.org/probability), a 
probabilistic library for the [Tensorflow](https://www.tensorflow.org)
machine learning platform.  This package provide extensions for Tensorflow
Probability related to epidemic analysis.  

            

Raw data

            {
    "_id": null,
    "home_page": "https://gem-epidemics.gitlab.io/gemlib",
    "name": "gemlib",
    "maintainer": "Jessica Bridgen",
    "docs_url": null,
    "requires_python": "<3.13.0,>=3.10.0",
    "maintainer_email": "j.bridgen@lancaster.ac.uk",
    "keywords": "epidemic, Bayesian, inference, infectious disease model, probabilistic programming",
    "author": "Chris Jewell",
    "author_email": "c.jewell@lancaster.ac.uk",
    "download_url": "https://files.pythonhosted.org/packages/23/7a/071e0c3e3d7ce1697dc3d3c311831ff76116bb467b911ef4c0b9206d932c/gemlib-0.12.1.tar.gz",
    "platform": null,
    "description": "`gemlib` scientific compute library\n===========================================\n\n`gemlib` is a scientific compute library build for epidemic \nanalysis.  It forms a component of the [GEM](http://fhm-chicas-code.lancs.ac.uk/GEM/gem)\nproject aimed at developing a reusable domain-specific modelling\nlanguage for epidemic inference and simulation.\n\n`gemlib` is heavily based on [Tensorflow Probability](https://www.tensorflow.org/probability), a \nprobabilistic library for the [Tensorflow](https://www.tensorflow.org)\nmachine learning platform.  This package provide extensions for Tensorflow\nProbability related to epidemic analysis.  \n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "GEMlib scientific compute library for epidemic modelling",
    "version": "0.12.1",
    "project_urls": {
        "Homepage": "https://gem-epidemics.gitlab.io/gemlib",
        "Repository": "https://gitlab.com/gem-epidemics/gemlib"
    },
    "split_keywords": [
        "epidemic",
        " bayesian",
        " inference",
        " infectious disease model",
        " probabilistic programming"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "94b3fa3de66060f6ed4e748dccf740f8adbfeb87d9cf2cacd40ee6b4375cff14",
                "md5": "cd09f9e220940d728ba6c742064b9703",
                "sha256": "67e363e4749e8c54986712fe93916deb6789ddf2e7221940f385bf79f45b0050"
            },
            "downloads": -1,
            "filename": "gemlib-0.12.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cd09f9e220940d728ba6c742064b9703",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13.0,>=3.10.0",
            "size": 125833,
            "upload_time": "2024-11-12T05:27:24",
            "upload_time_iso_8601": "2024-11-12T05:27:24.188865Z",
            "url": "https://files.pythonhosted.org/packages/94/b3/fa3de66060f6ed4e748dccf740f8adbfeb87d9cf2cacd40ee6b4375cff14/gemlib-0.12.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "237a071e0c3e3d7ce1697dc3d3c311831ff76116bb467b911ef4c0b9206d932c",
                "md5": "7d4868ae47eb1db92510379ec297879c",
                "sha256": "1098102f1c9f615faf0dbdf7d5683f93720bbb867d0f19f3889fefb519524a18"
            },
            "downloads": -1,
            "filename": "gemlib-0.12.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7d4868ae47eb1db92510379ec297879c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13.0,>=3.10.0",
            "size": 84039,
            "upload_time": "2024-11-12T05:27:28",
            "upload_time_iso_8601": "2024-11-12T05:27:28.508723Z",
            "url": "https://files.pythonhosted.org/packages/23/7a/071e0c3e3d7ce1697dc3d3c311831ff76116bb467b911ef4c0b9206d932c/gemlib-0.12.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-12 05:27:28",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "gem-epidemics",
    "gitlab_project": "gemlib",
    "lcname": "gemlib"
}
        
Elapsed time: 4.27751s