`gemlib` scientific compute library
===========================================
`gemlib` is a scientific compute library build for epidemic
analysis. It forms a component of the [GEM](http://fhm-chicas-code.lancs.ac.uk/GEM/gem)
project aimed at developing a reusable domain-specific modelling
language for epidemic inference and simulation.
`gemlib` is heavily based on [Tensorflow Probability](https://www.tensorflow.org/probability), a
probabilistic library for the [Tensorflow](https://www.tensorflow.org)
machine learning platform. This package provide extensions for Tensorflow
Probability related to epidemic analysis.
Raw data
{
"_id": null,
"home_page": "https://gem-epidemics.gitlab.io/gemlib",
"name": "gemlib",
"maintainer": "Jessica Bridgen",
"docs_url": null,
"requires_python": "<3.13.0,>=3.10.0",
"maintainer_email": "j.bridgen@lancaster.ac.uk",
"keywords": "epidemic, Bayesian, inference, infectious disease model, probabilistic programming",
"author": "Chris Jewell",
"author_email": "c.jewell@lancaster.ac.uk",
"download_url": "https://files.pythonhosted.org/packages/23/7a/071e0c3e3d7ce1697dc3d3c311831ff76116bb467b911ef4c0b9206d932c/gemlib-0.12.1.tar.gz",
"platform": null,
"description": "`gemlib` scientific compute library\n===========================================\n\n`gemlib` is a scientific compute library build for epidemic \nanalysis. It forms a component of the [GEM](http://fhm-chicas-code.lancs.ac.uk/GEM/gem)\nproject aimed at developing a reusable domain-specific modelling\nlanguage for epidemic inference and simulation.\n\n`gemlib` is heavily based on [Tensorflow Probability](https://www.tensorflow.org/probability), a \nprobabilistic library for the [Tensorflow](https://www.tensorflow.org)\nmachine learning platform. This package provide extensions for Tensorflow\nProbability related to epidemic analysis. \n",
"bugtrack_url": null,
"license": "MIT",
"summary": "GEMlib scientific compute library for epidemic modelling",
"version": "0.12.1",
"project_urls": {
"Homepage": "https://gem-epidemics.gitlab.io/gemlib",
"Repository": "https://gitlab.com/gem-epidemics/gemlib"
},
"split_keywords": [
"epidemic",
" bayesian",
" inference",
" infectious disease model",
" probabilistic programming"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "94b3fa3de66060f6ed4e748dccf740f8adbfeb87d9cf2cacd40ee6b4375cff14",
"md5": "cd09f9e220940d728ba6c742064b9703",
"sha256": "67e363e4749e8c54986712fe93916deb6789ddf2e7221940f385bf79f45b0050"
},
"downloads": -1,
"filename": "gemlib-0.12.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cd09f9e220940d728ba6c742064b9703",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13.0,>=3.10.0",
"size": 125833,
"upload_time": "2024-11-12T05:27:24",
"upload_time_iso_8601": "2024-11-12T05:27:24.188865Z",
"url": "https://files.pythonhosted.org/packages/94/b3/fa3de66060f6ed4e748dccf740f8adbfeb87d9cf2cacd40ee6b4375cff14/gemlib-0.12.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "237a071e0c3e3d7ce1697dc3d3c311831ff76116bb467b911ef4c0b9206d932c",
"md5": "7d4868ae47eb1db92510379ec297879c",
"sha256": "1098102f1c9f615faf0dbdf7d5683f93720bbb867d0f19f3889fefb519524a18"
},
"downloads": -1,
"filename": "gemlib-0.12.1.tar.gz",
"has_sig": false,
"md5_digest": "7d4868ae47eb1db92510379ec297879c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13.0,>=3.10.0",
"size": 84039,
"upload_time": "2024-11-12T05:27:28",
"upload_time_iso_8601": "2024-11-12T05:27:28.508723Z",
"url": "https://files.pythonhosted.org/packages/23/7a/071e0c3e3d7ce1697dc3d3c311831ff76116bb467b911ef4c0b9206d932c/gemlib-0.12.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-12 05:27:28",
"github": false,
"gitlab": true,
"bitbucket": false,
"codeberg": false,
"gitlab_user": "gem-epidemics",
"gitlab_project": "gemlib",
"lcname": "gemlib"
}