genderpred-in


Namegenderpred-in JSON
Version 1.0.3 PyPI version JSON
download
home_pagehttps://github.com/DhrvM/GenderPred-India
SummaryA Package to Predict the Gender of a Person based on their Name (Suited for Indian Names)
upload_time2024-06-13 05:23:58
maintainerNone
docs_urlNone
authorDhruv Malpani
requires_python>=3.10
licenseNone
keywords gender indian names lstm tensorflow keras classify prediction
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            

# GenderPred-IN

GenderPred-IN is a Python package designed to predict the gender of a person based on their name. It is specifically tailored for Indian names, leveraging advanced machine learning techniques to provide prediction with accuracy ~96%.

[PyPI](https://pypi.org/project/genderpred-in/1.0.1/)



### Features

- LSTM Model: Utilizes a Long Short-Term Memory (LSTM) neural network model to understand the sequential patterns in names.

- Tokenizer and Label Encoder: Processes names through a trained tokenizer and label encoder to convert names into a format suitable for the LSTM model.

- Pre-trained Model: Comes with a pre-trained model, eliminating the need for extensive training and setup.

- User-friendly: Simple and easy-to-use functions to get predictions with minimal setup.





## Getting Started

### Installation

**You can install the package using pip (easy-peasy way):**

```bash

pip  install  genderpred_in

```

**or you can use **github** to install (harder way):**



 1. Clone the repository:

 ```bash

 git clone https://github.com/DhrvM/GenderPred-India.git

cd GenderPred-India

 ```

 3. Install the package:

 ```bash

 pip install .

```

 5. Verify the installation:

 ```bash

 pip list

 ```



### Usage



**Import Package**

```python

from genderpred_in import classify_name, get_name, get_first_name, get_male_probability, get_female_probability, get_gender

```

**Here is an example of how to use the package:**

```python

# Classify the name "Rohit"

result = classify_name("Rohit")



# Retrieve and print the results

full_name = get_name(result)

first_name = get_first_name(result)

male_prob = get_male_probability(result)

female_prob = get_female_probability(result)

gender = get_gender(result)



print(f"Full Name: {full_name}")

print(f"First Name: {first_name}")

print(f"Male Probability: {male_prob}")

print(f"Female Probability: {female_prob}")

print(f"Gender: {gender}")

```



### Example Output:



```bash

Full Name: Rohit

First Name: ROHIT

Male Probability: 0.9916077852249146

Female Probability: 0.008392222225666046

Gender: male

```



### Functions

-   `classify_name(full_name)`: Classifies the given full name and returns a dictionary with the name, first name, gender, and probabilities.

-   `get_name(result)`: Retrieves the full name from the classification result.

-   `get_first_name(result)`: Retrieves the first name from the classification result.

-   `get_male_probability(result)`: Retrieves the male probability from the classification result.

-   `get_female_probability(result)`: Retrieves the female probability from the classification result.

-   `get_gender(result)`: Retrieves the predicted gender from the classification result. (Output: *male, female, unknown*)



## Versions

`Version 1.0.2` Fixed Model loading error for Windows.\

`Version 1.0.1` Uses LSTM model with a tokenized First-Name to Generate Predictions of Gender.





## Built With



-   [TensorFlow](https://www.tensorflow.org/) - The machine learning framework used

-   [Keras](https://keras.io/) - High-level neural networks API

-   [NumPy](https://numpy.org/) - Used for numerical computing

-   [Pandas](https://pandas.pydata.org/) - Data manipulation and analysis



## Authors

**Dhruv Malpani** - Initial Work

[LinkedIn](https://www.linkedin.com/in/dhruv-malpani/)

[GitHub](https://github.com/DhrvM)



## License



This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details.



## Acknowledgments

[**Praneeth Vasarla**](https://medium.com/@praneethvaasarla)

Your article helped me create the initial model using Logistic Regression and n-grams. ([article](https://medium.com/@praneethvaasarla/how-i-used-nlp-to-predict-the-gender-for-indian-names-df0ae30c275b))


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/DhrvM/GenderPred-India",
    "name": "genderpred-in",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "gender, indian, names, LSTM, tensorflow, keras, classify, prediction",
    "author": "Dhruv Malpani",
    "author_email": "dhruv.malpani2005@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3c/48/efecef10366c25c604da6aeb8ecd7151b9cfa99c156d5ec26fa708fbfa64/genderpred_in-1.0.3.tar.gz",
    "platform": null,
    "description": "\r\n\r\n# GenderPred-IN\r\n\r\nGenderPred-IN is a Python package designed to predict the gender of a person based on their name. It is specifically tailored for Indian names, leveraging advanced machine learning techniques to provide prediction with accuracy ~96%.\r\n\r\n[PyPI](https://pypi.org/project/genderpred-in/1.0.1/)\r\n\r\n\r\n\r\n### Features\r\n\r\n- LSTM Model: Utilizes a Long Short-Term Memory (LSTM) neural network model to understand the sequential patterns in names.\r\n\r\n- Tokenizer and Label Encoder: Processes names through a trained tokenizer and label encoder to convert names into a format suitable for the LSTM model.\r\n\r\n- Pre-trained Model: Comes with a pre-trained model, eliminating the need for extensive training and setup.\r\n\r\n- User-friendly: Simple and easy-to-use functions to get predictions with minimal setup.\r\n\r\n\r\n\r\n\r\n\r\n## Getting Started\r\n\r\n### Installation\r\n\r\n**You can install the package using pip (easy-peasy way):**\r\n\r\n```bash\r\n\r\npip  install  genderpred_in\r\n\r\n```\r\n\r\n**or you can use **github** to install (harder way):**\r\n\r\n\r\n\r\n 1. Clone the repository:\r\n\r\n ```bash\r\n\r\n git clone https://github.com/DhrvM/GenderPred-India.git\r\n\r\ncd GenderPred-India\r\n\r\n ```\r\n\r\n 3. Install the package:\r\n\r\n ```bash\r\n\r\n pip install .\r\n\r\n```\r\n\r\n 5. Verify the installation:\r\n\r\n ```bash\r\n\r\n pip list\r\n\r\n ```\r\n\r\n\r\n\r\n### Usage\r\n\r\n\r\n\r\n**Import Package**\r\n\r\n```python\r\n\r\nfrom genderpred_in import classify_name, get_name, get_first_name, get_male_probability, get_female_probability, get_gender\r\n\r\n```\r\n\r\n**Here is an example of how to use the package:**\r\n\r\n```python\r\n\r\n# Classify the name \"Rohit\"\r\n\r\nresult = classify_name(\"Rohit\")\r\n\r\n\r\n\r\n# Retrieve and print the results\r\n\r\nfull_name = get_name(result)\r\n\r\nfirst_name = get_first_name(result)\r\n\r\nmale_prob = get_male_probability(result)\r\n\r\nfemale_prob = get_female_probability(result)\r\n\r\ngender = get_gender(result)\r\n\r\n\r\n\r\nprint(f\"Full Name: {full_name}\")\r\n\r\nprint(f\"First Name: {first_name}\")\r\n\r\nprint(f\"Male Probability: {male_prob}\")\r\n\r\nprint(f\"Female Probability: {female_prob}\")\r\n\r\nprint(f\"Gender: {gender}\")\r\n\r\n```\r\n\r\n\r\n\r\n### Example Output:\r\n\r\n\r\n\r\n```bash\r\n\r\nFull Name: Rohit\r\n\r\nFirst Name: ROHIT\r\n\r\nMale Probability: 0.9916077852249146\r\n\r\nFemale Probability: 0.008392222225666046\r\n\r\nGender: male\r\n\r\n```\r\n\r\n\r\n\r\n### Functions\r\n\r\n-   `classify_name(full_name)`: Classifies the given full name and returns a dictionary with the name, first name, gender, and probabilities.\r\n\r\n-   `get_name(result)`: Retrieves the full name from the classification result.\r\n\r\n-   `get_first_name(result)`: Retrieves the first name from the classification result.\r\n\r\n-   `get_male_probability(result)`: Retrieves the male probability from the classification result.\r\n\r\n-   `get_female_probability(result)`: Retrieves the female probability from the classification result.\r\n\r\n-   `get_gender(result)`: Retrieves the predicted gender from the classification result. (Output: *male, female, unknown*)\r\n\r\n\r\n\r\n## Versions\r\n\r\n`Version 1.0.2` Fixed Model loading error for Windows.\\\r\n\r\n`Version 1.0.1` Uses LSTM model with a tokenized First-Name to Generate Predictions of Gender.\r\n\r\n\r\n\r\n\r\n\r\n## Built With\r\n\r\n\r\n\r\n-   [TensorFlow](https://www.tensorflow.org/) - The machine learning framework used\r\n\r\n-   [Keras](https://keras.io/) - High-level neural networks API\r\n\r\n-   [NumPy](https://numpy.org/) - Used for numerical computing\r\n\r\n-   [Pandas](https://pandas.pydata.org/) - Data manipulation and analysis\r\n\r\n\r\n\r\n## Authors\r\n\r\n**Dhruv Malpani** - Initial Work\r\n\r\n[LinkedIn](https://www.linkedin.com/in/dhruv-malpani/)\r\n\r\n[GitHub](https://github.com/DhrvM)\r\n\r\n\r\n\r\n## License\r\n\r\n\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details.\r\n\r\n\r\n\r\n## Acknowledgments\r\n\r\n[**Praneeth Vasarla**](https://medium.com/@praneethvaasarla)\r\n\r\nYour article helped me create the initial model using Logistic Regression and n-grams. ([article](https://medium.com/@praneethvaasarla/how-i-used-nlp-to-predict-the-gender-for-indian-names-df0ae30c275b))\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Package to Predict the Gender of a Person based on their Name (Suited for Indian Names)",
    "version": "1.0.3",
    "project_urls": {
        "Homepage": "https://github.com/DhrvM/GenderPred-India"
    },
    "split_keywords": [
        "gender",
        " indian",
        " names",
        " lstm",
        " tensorflow",
        " keras",
        " classify",
        " prediction"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "81ed2ea1dff333956ab7fa1574e8ff20befdb113d52e495a079f66c0fea1a46c",
                "md5": "8a2c8cea77cce846d645ed4a0a2e3587",
                "sha256": "89b78e4d84825d3f47c3f17799507c0e813593d32b52926bcc19fc76947209f2"
            },
            "downloads": -1,
            "filename": "genderpred_in-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8a2c8cea77cce846d645ed4a0a2e3587",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 1051235,
            "upload_time": "2024-06-13T05:23:55",
            "upload_time_iso_8601": "2024-06-13T05:23:55.972996Z",
            "url": "https://files.pythonhosted.org/packages/81/ed/2ea1dff333956ab7fa1574e8ff20befdb113d52e495a079f66c0fea1a46c/genderpred_in-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3c48efecef10366c25c604da6aeb8ecd7151b9cfa99c156d5ec26fa708fbfa64",
                "md5": "ea20f2d4e424655c1cd827d40cace5aa",
                "sha256": "7254cf3c38005faf1fcc514f5eab1c90ad27e3095ec005f036604a5b9061b7e7"
            },
            "downloads": -1,
            "filename": "genderpred_in-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "ea20f2d4e424655c1cd827d40cace5aa",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 1053488,
            "upload_time": "2024-06-13T05:23:58",
            "upload_time_iso_8601": "2024-06-13T05:23:58.357095Z",
            "url": "https://files.pythonhosted.org/packages/3c/48/efecef10366c25c604da6aeb8ecd7151b9cfa99c156d5ec26fa708fbfa64/genderpred_in-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-13 05:23:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DhrvM",
    "github_project": "GenderPred-India",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "genderpred-in"
}
        
Elapsed time: 2.02810s