gene-ranking-shootout


Namegene-ranking-shootout JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://github.com/bihealth/gene-ranking-shootout
SummaryCompare gene ranking methods.
upload_time2023-05-30 10:30:29
maintainer
docs_urlNone
authorManuel Holtgrewe
requires_python>=3.8
license
keywords genes ranking
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![CI](https://github.com/bihealth/gene-ranking-shootout/actions/workflows/main.yml/badge.svg)](https://github.com/bihealth/gene-ranking-shootout/actions/workflows/main.yml)
[![Pypi Package Version](https://img.shields.io/pypi/v/gene-ranking-shootout.svg)](https://pypi.org/project/gene-ranking-shootout)
[![Pypi Python Version](https://img.shields.io/pypi/pyversions/gene-ranking-shootout.svg)](https://pypi.org/project/gene-ranking-shootout)

# Gene Ranking Shootout

A benchmark for methods that rank genes according to their relevance for a given phenotype (list of HPO terms).

## Methods

The following methods are currently included in the benchmark:

- AMELIE (via web service)
- CADA (via custom Docker/Podman image)
- Phen2Gene (via official Docker/Podman image)
- Phenix algorithm (as implemented in VarFish)
- Exomiser Algorithms:
  - Phenix
  - Phive
  - HiPhive (variants: human only, human-mouse only, all human-mouse-fish-ppi)

## Installation

Simply install with `pip` (probably inside a conda environment or virtualenv):

```bash
$ git clone https://github.com/bihealth/gene-ranking-shootout.git
$ cd gene-ranking-shootout
$ pip install -e .
$ gene-ranking-shootout --help
```

## Usage

List datasets in the benchmark:

```bash
$ gene-ranking-shootout dataset list
cada_clinvar_cases
cada_cases_test
cada_cases_validate
cada_all_cases
cada_collaborator_cases
cada_cases_train
```

Show the first entry in a dataset:

```bash
$ gene-ranking-shootout dataset head cada_cases_test --count 2
{"name": "Patient:SCV000281758", "disease_omim_id": "OMIM:617360", "disease_gene_id": "Entrez:8621", "hpo_terms": ["HP:0001508"], "candidate_gene_ids": null}
{"name": "Patient:SCV000864231", "disease_omim_id": "OMIM:132900", "disease_gene_id": "Entrez:4629", "hpo_terms": ["HP:0011499", "HP:0000021"], "candidate_gene_ids": null}
```

Simulate cases based on one or more datasets.
This will pick a number of cases from the datasets.
Further, it will pick another number of random genes based on the number of rare variants (freq below 0.1% in gnomAD genomes).
The results are written into a JSON file with the cases.
The simulation is randomized with a fixed seed that can be adjusted on the command line if necessary.

```bash
$ gene-ranking-shootout dataset simulate \
    /tmp/cases.json \
    $(gene-ranking-shootout dataset list) \
    --case-count 4714 \
    --candidate-genes-count 100
2023-05-05 11:16:35 | INFO   | Loading data
2023-05-05 11:16:35 | INFO   | ... 4714 cases overall (9428 duplicates)
2023-05-05 11:16:35 | INFO   | Simulating cases
2023-05-05 11:16:37 | INFO   | Wrote 4714 cases
```

You can then run the benchmark on the cases with the different methods:

```
$ gene-ranking-shootout benchmark
Usage: gene-ranking-shootout benchmark [OPTIONS] COMMAND [ARGS]...

  Group for benchmark sub commands.

Options:
  --help  Show this message and exit.

Commands:
  amelie          Benchmark the AMELIE web server.
  phen2gene       Benchmark the Phen2Gene container.
  summarize       Summarize the results.
  varfish-phenix  Benchmark the VarFish implementation of the Phenix...
$ gene-ranking-shootout benchmark amelie /tmp/cases.json /tmp/result-amelie.json
$ gene-ranking-shootout benchmark phen2gene /tmp/cases.json /tmp/result-phen2gene.json
$ gene-ranking-shootout benchmark varfish-phenix http://127.0.0.1:8081/hpo/sim/term-gene /tmp/cases.json /tmp/result-varfish-phenix.json
$ gene-ranking-shootout benchmark cada /tmp/cases.json /tmp/result-cada.json
$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ phenix /tmp/cases.json /tmp/result-exomiser-phenix.json
$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ phive /tmp/cases.json /tmp/result-exomiser-phive.json
$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ hiphive /tmp/cases.json /tmp/result-exomiser-hiphive.json
$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ hiphive-mouse /tmp/cases.json /tmp/result-exomiser-hiphive-mouse.json
$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ hiphive-human /tmp/cases.json /tmp/result-exomiser-hiphive-human.json
```

You can also visualize the details of the benchmark results for each result file (below for 100 cases). This visualization displays the number of true disease genes (from case set definitions) at TOP10 and following positions in the ranked gene list of the respective method.

```bash
$ gene-ranking-shootout benchmark summarize /tmp/result-amelie.json
    1:   48  ################################
    2:   17  ###########
    3:    7  ####
    4:    3  ##
    5:    6  ####
    6:    3  ##
    7:    2  #
    8:    3  ##
    9:    1  .
   10:    0  

11-..:    9  ######
mssng:    0  
```

## Building CADA Podman Image

There is no public REST API or docker image for CADA (yet).
Here is how to build the needed CADA Podman image:

```bash
# cd docker/cada
# bash build.sh
...
# podman run -it --rm localhost/cada-for-shootout:latest --help
```

## Running Phenix in VarFish

Send an email to the author to get a copy of the necessary data.
Then, run the following in the background.

```bash
$ varfish-server-worker server pheno --path-hpo-dir path/to/varfish-server-worker-db/hpo
```

## Running Exomiser

The following are more rough notes than a full manual.
This uses the current Exomiser RES API version 13.2.0 (current at: 2023-05-05).
You will need approximately 75GB of storage for download and extraction and afterwards 49GB.
Probably one could get rid of a lot of the variant-specific data but I did not go into detail here.

```bash
$ wget https://github.com/exomiser/Exomiser/releases/download/13.2.0/exomiser-rest-prioritiser-13.2.0.jar
$ wget https://data.monarchinitiative.org/exomiser/latest/2302_phenotype.zip
$ wget https://data.monarchinitiative.org/exomiser/latest/2302_hg19.zip
$ unzip 2302_phenotype.zip
$ unzip 2302_hg19.zip
$ cat <<EOF > application.properties
exomiser.data-directory=$PWD
exomiser.hg19.data-version=1909
exomiser.phenotype.data-version=2302
exomiser.phenotype.random-walk-file-name=rw_string_10.mv
EOF
$ java -Xmx6G -Xms2G -Dserver.address=0.0.0.0 -Dserver.port=8081 -jar exomiser-rest-prioritiser-13.2.0.jar
```

## Datasets

The following datasets are included at the moment:

- `cada_cases_test.json` - converte from CADA's `cases_test.tsv`
- `cada_cases_train.json` - converte from CADA's `cases_train.tsv`
- `cada_cases_validate.json` - converte from CADA's `cases_validate.tsv`
- `cada_clinvar_cases.json` - converte from CADA's `clinvar_cases.tsv`
- `cada_collaborator_cases.json` - converte from CADA's `collaborator_cases.tsv`

You can conver TSV files with the following structure with `gene-ranking-shootout dataset convert-tsv`.

- Column 1: name for the case; must start with `Patient:` or is ignored.
- Column 2: disease_omim_id; as `OMIM:123456` or `unknown`
- Column 3: disease_gene_id; as `Entrez:123456`
- Column 4: hpo_terms; as semicolon-separated list, e.g., `HP:0001234;HP:0005678`

If a row has less than 4 columns, we assume that column 2 is missing.
All further columns are ignored.
The file should not have a header.
You can find some files in the CADA repository here:

- https://github.com/Chengyao-Peng/CADA/tree/main/src/CADA

The call to `gene-ranking-shootout dataset convert-tsv` should be as follows.

```bash
$ gene-ranking-shootout dataset convert-tsv input.tsv output.json
```

## Some Preliminary Results

The following was generated on 2023/05/05 with all 4714 cases.

```
$ for f in /tmp/result-*.json; do (set -x; gene-ranking-shootout benchmark summarize --bars-top-n 20 $f); echo; done
+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-cada.json
    1: 3462  ################################################
    2:  536  #######
    3:  205  ##
    4:  133  #
    5:   71  .
    6:   57  .
    7:   39  .
    8:   47  .
    9:   16  .
   10:   24  .
   11:   14  .
   12:   22  .
   13:   14  .
   14:   11  .
   15:    7  .
   16:    9  .
   17:    8  .
   18:    4  .
   19:    3  .
   20:    3  .

21-..:   29  .
mssng:    0  

+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-hiphive-human.json
    1: 2593  ####################################
    2:  637  ########
    3:  375  #####
    4:  203  ##
    5:  132  #
    6:  104  #
    7:   99  #
    8:   80  #
    9:   61  .
   10:   46  .
   11:   44  .
   12:   30  .
   13:   30  .
   14:   30  .
   15:   15  .
   16:   22  .
   17:   12  .
   18:   11  .
   19:   13  .
   20:   10  .

21-..:  149  ##
mssng:    0  

+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-hiphive.json
    1: 2418  #################################
    2:  686  #########
    3:  355  ####
    4:  226  ###
    5:  155  ##
    6:  122  #
    7:   86  #
    8:   95  #
    9:   54  .
   10:   54  .
   11:   52  .
   12:   28  .
   13:   29  .
   14:   27  .
   15:   16  .
   16:   11  .
   17:   23  .
   18:    9  .
   19:   10  .
   20:   14  .

21-..:  226  ###
mssng:    0  

+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-hiphive-mouse.json
    1: 2418  #################################
    2:  685  #########
    3:  357  #####
    4:  227  ###
    5:  160  ##
    6:  121  #
    7:   90  #
    8:   96  #
    9:   55  .
   10:   56  .
   11:   58  .
   12:   37  .
   13:   31  .
   14:   26  .
   15:   22  .
   16:   18  .
   17:   26  .
   18:   19  .
   19:   14  .
   20:   15  .

21-..:  165  ##
mssng:    0  

+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-phenix.json
    1: 2566  ####################################
    2:  619  ########
    3:  306  ####
    4:  208  ##
    5:  152  ##
    6:  119  #
    7:   90  #
    8:   80  #
    9:   73  #
   10:   64  .
   11:   49  .
   12:   41  .
   13:   40  .
   14:   26  .
   15:   29  .
   16:   27  .
   17:   15  .
   18:   17  .
   19:   10  .
   20:   16  .

21-..:  149  ##
mssng:    0  

+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-phive.json
    1:  934  #############
    2:  298  ####
    3:  163  ##
    4:  101  #
    5:   50  .
    6:   44  .
    7:   30  .
    8:   33  .
    9:   16  .
   10:   16  .
   11:   10  .
   12:    9  .
   13:   17  .
   14:   13  .
   15:   12  .
   16:   16  .
   17:   14  .
   18:   23  .
   19:   28  .
   20:   33  .

21-..: 2836  #######################################
mssng:    0  

+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-phen2gene.json
    1: 2426  ##################################
    2:  470  ######
    3:  209  ##
    4:  125  #
    5:  101  #
    6:   67  .
    7:   51  .
    8:   62  .
    9:   53  .
   10:   41  .
   11:   33  .
   12:   37  .
   13:   42  .
   14:   33  .
   15:   34  .
   16:   28  .
   17:   18  .
   18:   29  .
   19:   17  .
   20:   19  .

21-..:  763  ##########
mssng:    0  

+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-varfish-phenix.json
    1: 1709  #######################
    2:  616  ########
    3:  357  ####
    4:  277  ###
    5:  184  ##
    6:  152  ##
    7:  131  #
    8:  118  #
    9:  105  #
   10:   78  #
   11:   71  .
   12:   57  .
   13:   67  .
   14:   64  .
   15:   67  .
   16:   71  .
   17:   56  .
   18:   48  .
   19:   34  .
   20:   48  .

21-..:  403  #####
mssng:    0  
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/bihealth/gene-ranking-shootout",
    "name": "gene-ranking-shootout",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "genes,ranking",
    "author": "Manuel Holtgrewe",
    "author_email": "manuel.holtgrewe@bih-charite.de",
    "download_url": "https://files.pythonhosted.org/packages/c4/b8/a7700d4e76fa8101718c57dba7ab9043ca08705ab5949fa92966d761b084/gene-ranking-shootout-0.1.3.tar.gz",
    "platform": "any",
    "description": "[![CI](https://github.com/bihealth/gene-ranking-shootout/actions/workflows/main.yml/badge.svg)](https://github.com/bihealth/gene-ranking-shootout/actions/workflows/main.yml)\n[![Pypi Package Version](https://img.shields.io/pypi/v/gene-ranking-shootout.svg)](https://pypi.org/project/gene-ranking-shootout)\n[![Pypi Python Version](https://img.shields.io/pypi/pyversions/gene-ranking-shootout.svg)](https://pypi.org/project/gene-ranking-shootout)\n\n# Gene Ranking Shootout\n\nA benchmark for methods that rank genes according to their relevance for a given phenotype (list of HPO terms).\n\n## Methods\n\nThe following methods are currently included in the benchmark:\n\n- AMELIE (via web service)\n- CADA (via custom Docker/Podman image)\n- Phen2Gene (via official Docker/Podman image)\n- Phenix algorithm (as implemented in VarFish)\n- Exomiser Algorithms:\n  - Phenix\n  - Phive\n  - HiPhive (variants: human only, human-mouse only, all human-mouse-fish-ppi)\n\n## Installation\n\nSimply install with `pip` (probably inside a conda environment or virtualenv):\n\n```bash\n$ git clone https://github.com/bihealth/gene-ranking-shootout.git\n$ cd gene-ranking-shootout\n$ pip install -e .\n$ gene-ranking-shootout --help\n```\n\n## Usage\n\nList datasets in the benchmark:\n\n```bash\n$ gene-ranking-shootout dataset list\ncada_clinvar_cases\ncada_cases_test\ncada_cases_validate\ncada_all_cases\ncada_collaborator_cases\ncada_cases_train\n```\n\nShow the first entry in a dataset:\n\n```bash\n$ gene-ranking-shootout dataset head cada_cases_test --count 2\n{\"name\": \"Patient:SCV000281758\", \"disease_omim_id\": \"OMIM:617360\", \"disease_gene_id\": \"Entrez:8621\", \"hpo_terms\": [\"HP:0001508\"], \"candidate_gene_ids\": null}\n{\"name\": \"Patient:SCV000864231\", \"disease_omim_id\": \"OMIM:132900\", \"disease_gene_id\": \"Entrez:4629\", \"hpo_terms\": [\"HP:0011499\", \"HP:0000021\"], \"candidate_gene_ids\": null}\n```\n\nSimulate cases based on one or more datasets.\nThis will pick a number of cases from the datasets.\nFurther, it will pick another number of random genes based on the number of rare variants (freq below 0.1% in gnomAD genomes).\nThe results are written into a JSON file with the cases.\nThe simulation is randomized with a fixed seed that can be adjusted on the command line if necessary.\n\n```bash\n$ gene-ranking-shootout dataset simulate \\\n    /tmp/cases.json \\\n    $(gene-ranking-shootout dataset list) \\\n    --case-count 4714 \\\n    --candidate-genes-count 100\n2023-05-05 11:16:35 | INFO   | Loading data\n2023-05-05 11:16:35 | INFO   | ... 4714 cases overall (9428 duplicates)\n2023-05-05 11:16:35 | INFO   | Simulating cases\n2023-05-05 11:16:37 | INFO   | Wrote 4714 cases\n```\n\nYou can then run the benchmark on the cases with the different methods:\n\n```\n$ gene-ranking-shootout benchmark\nUsage: gene-ranking-shootout benchmark [OPTIONS] COMMAND [ARGS]...\n\n  Group for benchmark sub commands.\n\nOptions:\n  --help  Show this message and exit.\n\nCommands:\n  amelie          Benchmark the AMELIE web server.\n  phen2gene       Benchmark the Phen2Gene container.\n  summarize       Summarize the results.\n  varfish-phenix  Benchmark the VarFish implementation of the Phenix...\n$ gene-ranking-shootout benchmark amelie /tmp/cases.json /tmp/result-amelie.json\n$ gene-ranking-shootout benchmark phen2gene /tmp/cases.json /tmp/result-phen2gene.json\n$ gene-ranking-shootout benchmark varfish-phenix http://127.0.0.1:8081/hpo/sim/term-gene /tmp/cases.json /tmp/result-varfish-phenix.json\n$ gene-ranking-shootout benchmark cada /tmp/cases.json /tmp/result-cada.json\n$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ phenix /tmp/cases.json /tmp/result-exomiser-phenix.json\n$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ phive /tmp/cases.json /tmp/result-exomiser-phive.json\n$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ hiphive /tmp/cases.json /tmp/result-exomiser-hiphive.json\n$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ hiphive-mouse /tmp/cases.json /tmp/result-exomiser-hiphive-mouse.json\n$ gene-ranking-shootout benchmark exomiser http://localhost:8081/ hiphive-human /tmp/cases.json /tmp/result-exomiser-hiphive-human.json\n```\n\nYou can also visualize the details of the benchmark results for each result file (below for 100 cases). This visualization displays the number of true disease genes (from case set definitions) at TOP10 and following positions in the ranked gene list of the respective method.\n\n```bash\n$ gene-ranking-shootout benchmark summarize /tmp/result-amelie.json\n    1:   48  ################################\n    2:   17  ###########\n    3:    7  ####\n    4:    3  ##\n    5:    6  ####\n    6:    3  ##\n    7:    2  #\n    8:    3  ##\n    9:    1  .\n   10:    0  \n\n11-..:    9  ######\nmssng:    0  \n```\n\n## Building CADA Podman Image\n\nThere is no public REST API or docker image for CADA (yet).\nHere is how to build the needed CADA Podman image:\n\n```bash\n# cd docker/cada\n# bash build.sh\n...\n# podman run -it --rm localhost/cada-for-shootout:latest --help\n```\n\n## Running Phenix in VarFish\n\nSend an email to the author to get a copy of the necessary data.\nThen, run the following in the background.\n\n```bash\n$ varfish-server-worker server pheno --path-hpo-dir path/to/varfish-server-worker-db/hpo\n```\n\n## Running Exomiser\n\nThe following are more rough notes than a full manual.\nThis uses the current Exomiser RES API version 13.2.0 (current at: 2023-05-05).\nYou will need approximately 75GB of storage for download and extraction and afterwards 49GB.\nProbably one could get rid of a lot of the variant-specific data but I did not go into detail here.\n\n```bash\n$ wget https://github.com/exomiser/Exomiser/releases/download/13.2.0/exomiser-rest-prioritiser-13.2.0.jar\n$ wget https://data.monarchinitiative.org/exomiser/latest/2302_phenotype.zip\n$ wget https://data.monarchinitiative.org/exomiser/latest/2302_hg19.zip\n$ unzip 2302_phenotype.zip\n$ unzip 2302_hg19.zip\n$ cat <<EOF > application.properties\nexomiser.data-directory=$PWD\nexomiser.hg19.data-version=1909\nexomiser.phenotype.data-version=2302\nexomiser.phenotype.random-walk-file-name=rw_string_10.mv\nEOF\n$ java -Xmx6G -Xms2G -Dserver.address=0.0.0.0 -Dserver.port=8081 -jar exomiser-rest-prioritiser-13.2.0.jar\n```\n\n## Datasets\n\nThe following datasets are included at the moment:\n\n- `cada_cases_test.json` - converte from CADA's `cases_test.tsv`\n- `cada_cases_train.json` - converte from CADA's `cases_train.tsv`\n- `cada_cases_validate.json` - converte from CADA's `cases_validate.tsv`\n- `cada_clinvar_cases.json` - converte from CADA's `clinvar_cases.tsv`\n- `cada_collaborator_cases.json` - converte from CADA's `collaborator_cases.tsv`\n\nYou can conver TSV files with the following structure with `gene-ranking-shootout dataset convert-tsv`.\n\n- Column 1: name for the case; must start with `Patient:` or is ignored.\n- Column 2: disease_omim_id; as `OMIM:123456` or `unknown`\n- Column 3: disease_gene_id; as `Entrez:123456`\n- Column 4: hpo_terms; as semicolon-separated list, e.g., `HP:0001234;HP:0005678`\n\nIf a row has less than 4 columns, we assume that column 2 is missing.\nAll further columns are ignored.\nThe file should not have a header.\nYou can find some files in the CADA repository here:\n\n- https://github.com/Chengyao-Peng/CADA/tree/main/src/CADA\n\nThe call to `gene-ranking-shootout dataset convert-tsv` should be as follows.\n\n```bash\n$ gene-ranking-shootout dataset convert-tsv input.tsv output.json\n```\n\n## Some Preliminary Results\n\nThe following was generated on 2023/05/05 with all 4714 cases.\n\n```\n$ for f in /tmp/result-*.json; do (set -x; gene-ranking-shootout benchmark summarize --bars-top-n 20 $f); echo; done\n+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-cada.json\n    1: 3462  ################################################\n    2:  536  #######\n    3:  205  ##\n    4:  133  #\n    5:   71  .\n    6:   57  .\n    7:   39  .\n    8:   47  .\n    9:   16  .\n   10:   24  .\n   11:   14  .\n   12:   22  .\n   13:   14  .\n   14:   11  .\n   15:    7  .\n   16:    9  .\n   17:    8  .\n   18:    4  .\n   19:    3  .\n   20:    3  .\n\n21-..:   29  .\nmssng:    0  \n\n+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-hiphive-human.json\n    1: 2593  ####################################\n    2:  637  ########\n    3:  375  #####\n    4:  203  ##\n    5:  132  #\n    6:  104  #\n    7:   99  #\n    8:   80  #\n    9:   61  .\n   10:   46  .\n   11:   44  .\n   12:   30  .\n   13:   30  .\n   14:   30  .\n   15:   15  .\n   16:   22  .\n   17:   12  .\n   18:   11  .\n   19:   13  .\n   20:   10  .\n\n21-..:  149  ##\nmssng:    0  \n\n+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-hiphive.json\n    1: 2418  #################################\n    2:  686  #########\n    3:  355  ####\n    4:  226  ###\n    5:  155  ##\n    6:  122  #\n    7:   86  #\n    8:   95  #\n    9:   54  .\n   10:   54  .\n   11:   52  .\n   12:   28  .\n   13:   29  .\n   14:   27  .\n   15:   16  .\n   16:   11  .\n   17:   23  .\n   18:    9  .\n   19:   10  .\n   20:   14  .\n\n21-..:  226  ###\nmssng:    0  \n\n+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-hiphive-mouse.json\n    1: 2418  #################################\n    2:  685  #########\n    3:  357  #####\n    4:  227  ###\n    5:  160  ##\n    6:  121  #\n    7:   90  #\n    8:   96  #\n    9:   55  .\n   10:   56  .\n   11:   58  .\n   12:   37  .\n   13:   31  .\n   14:   26  .\n   15:   22  .\n   16:   18  .\n   17:   26  .\n   18:   19  .\n   19:   14  .\n   20:   15  .\n\n21-..:  165  ##\nmssng:    0  \n\n+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-phenix.json\n    1: 2566  ####################################\n    2:  619  ########\n    3:  306  ####\n    4:  208  ##\n    5:  152  ##\n    6:  119  #\n    7:   90  #\n    8:   80  #\n    9:   73  #\n   10:   64  .\n   11:   49  .\n   12:   41  .\n   13:   40  .\n   14:   26  .\n   15:   29  .\n   16:   27  .\n   17:   15  .\n   18:   17  .\n   19:   10  .\n   20:   16  .\n\n21-..:  149  ##\nmssng:    0  \n\n+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-exomiser-phive.json\n    1:  934  #############\n    2:  298  ####\n    3:  163  ##\n    4:  101  #\n    5:   50  .\n    6:   44  .\n    7:   30  .\n    8:   33  .\n    9:   16  .\n   10:   16  .\n   11:   10  .\n   12:    9  .\n   13:   17  .\n   14:   13  .\n   15:   12  .\n   16:   16  .\n   17:   14  .\n   18:   23  .\n   19:   28  .\n   20:   33  .\n\n21-..: 2836  #######################################\nmssng:    0  \n\n+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-phen2gene.json\n    1: 2426  ##################################\n    2:  470  ######\n    3:  209  ##\n    4:  125  #\n    5:  101  #\n    6:   67  .\n    7:   51  .\n    8:   62  .\n    9:   53  .\n   10:   41  .\n   11:   33  .\n   12:   37  .\n   13:   42  .\n   14:   33  .\n   15:   34  .\n   16:   28  .\n   17:   18  .\n   18:   29  .\n   19:   17  .\n   20:   19  .\n\n21-..:  763  ##########\nmssng:    0  \n\n+ gene-ranking-shootout benchmark summarize --bars-top-n 20 result-varfish-phenix.json\n    1: 1709  #######################\n    2:  616  ########\n    3:  357  ####\n    4:  277  ###\n    5:  184  ##\n    6:  152  ##\n    7:  131  #\n    8:  118  #\n    9:  105  #\n   10:   78  #\n   11:   71  .\n   12:   57  .\n   13:   67  .\n   14:   64  .\n   15:   67  .\n   16:   71  .\n   17:   56  .\n   18:   48  .\n   19:   34  .\n   20:   48  .\n\n21-..:  403  #####\nmssng:    0  \n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Compare gene ranking methods.",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://github.com/bihealth/gene-ranking-shootout"
    },
    "split_keywords": [
        "genes",
        "ranking"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c4b8a7700d4e76fa8101718c57dba7ab9043ca08705ab5949fa92966d761b084",
                "md5": "402a0a74adb998b6fdbe3366365d275a",
                "sha256": "103929e83cdee001d3589e9cc259417fa536ce181f87bedc5e0ffd305934fa41"
            },
            "downloads": -1,
            "filename": "gene-ranking-shootout-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "402a0a74adb998b6fdbe3366365d275a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 810457,
            "upload_time": "2023-05-30T10:30:29",
            "upload_time_iso_8601": "2023-05-30T10:30:29.363670Z",
            "url": "https://files.pythonhosted.org/packages/c4/b8/a7700d4e76fa8101718c57dba7ab9043ca08705ab5949fa92966d761b084/gene-ranking-shootout-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-30 10:30:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bihealth",
    "github_project": "gene-ranking-shootout",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "gene-ranking-shootout"
}
        
Elapsed time: 0.09939s