generalize


Namegeneralize JSON
Version 0.2.1 PyPI version JSON
download
home_pagehttps://github.com/ludvigolsen/generalize
SummaryMachine learning tools for running repeated nested leave-one-dataset-out validation and more.
upload_time2024-12-05 23:15:50
maintainerNone
docs_urlNone
authorLudvig Renbo Olsen
requires_python<4.0,>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Generalize <a href='https://github.com/LudvigOlsen/generalize'><img src='https://raw.githubusercontent.com/LudvigOlsen/generalize/master/generalize_242x280_250dpi.png' align="right" height="140" /></a>

**Author:** [Ludvig R. Olsen](https://www.ludvigolsen.dk/) ( <r-pkgs@ludvigolsen.dk> )

The ultimate goal of training machine learning models is to generalize to new, unseen data. This package contains tools for measuring model performance across multiple datasets via cross-dataset-validation (aka. leave-one-dataset-out).

Under development!

 - Not generalized enough for general usage (ironic, I know)
 - Relies on an old version of scikit-learn, needs updating
 - Linear regression is not currently implemented
 - Help strings are likely not up-to-date

### Main functions and classes

| Function                       | Description                                                                        |
|:-------------------------------|:-----------------------------------------------------------------------------------|
| `nested_cross_validate()`      | Run (repeated) nested cross-validation.                                            |
| `train_full_model()`           | Train model on all data and save to disk.                                          |
| `evaluate_univariate_models()` | Evaluate prediction potential of every predictor separately.                       |
| `PipelineDesigner`             | Design a scikit-learn pipeline for use in cross-validation.                        |
| `ROCCurve`, `ROCCurves`        | ROC curve containers with various utility methods.                                 |
| `select_samples()`             | Utility for selecting samples based on (collapsed) labels.                         |
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ludvigolsen/generalize",
    "name": "generalize",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Ludvig Renbo Olsen",
    "author_email": "mail@ludvigolsen.dk",
    "download_url": "https://files.pythonhosted.org/packages/46/da/b2e9ded8defa89ebc91ee6cd7736cb1aeb59ad4dac5bc5870b06c2a785eb/generalize-0.2.1.tar.gz",
    "platform": null,
    "description": "# Generalize <a href='https://github.com/LudvigOlsen/generalize'><img src='https://raw.githubusercontent.com/LudvigOlsen/generalize/master/generalize_242x280_250dpi.png' align=\"right\" height=\"140\" /></a>\n\n**Author:** [Ludvig R. Olsen](https://www.ludvigolsen.dk/) ( <r-pkgs@ludvigolsen.dk> )\n\nThe ultimate goal of training machine learning models is to generalize to new, unseen data. This package contains tools for measuring model performance across multiple datasets via cross-dataset-validation (aka. leave-one-dataset-out).\n\nUnder development!\n\n - Not generalized enough for general usage (ironic, I know)\n - Relies on an old version of scikit-learn, needs updating\n - Linear regression is not currently implemented\n - Help strings are likely not up-to-date\n\n### Main functions and classes\n\n| Function                       | Description                                                                        |\n|:-------------------------------|:-----------------------------------------------------------------------------------|\n| `nested_cross_validate()`      | Run (repeated) nested cross-validation.                                            |\n| `train_full_model()`           | Train model on all data and save to disk.                                          |\n| `evaluate_univariate_models()` | Evaluate prediction potential of every predictor separately.                       |\n| `PipelineDesigner`             | Design a scikit-learn pipeline for use in cross-validation.                        |\n| `ROCCurve`, `ROCCurves`        | ROC curve containers with various utility methods.                                 |\n| `select_samples()`             | Utility for selecting samples based on (collapsed) labels.                         |",
    "bugtrack_url": null,
    "license": null,
    "summary": "Machine learning tools for running repeated nested leave-one-dataset-out validation and more.",
    "version": "0.2.1",
    "project_urls": {
        "Homepage": "https://github.com/ludvigolsen/generalize",
        "Repository": "https://github.com/ludvigolsen/generalize",
        "issues": "https://github.com/ludvigolsen/generalize/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "04c64ea3b9859d0758ab1eb9c696e982365ffb758307ae6f5b3dc12eedf863de",
                "md5": "25a662006763f79008241656412fe8e0",
                "sha256": "6dfc384d1e168014b750654f34c990055c7075e4d3761516a483daaca361ca35"
            },
            "downloads": -1,
            "filename": "generalize-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "25a662006763f79008241656412fe8e0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 150057,
            "upload_time": "2024-12-05T23:15:48",
            "upload_time_iso_8601": "2024-12-05T23:15:48.889647Z",
            "url": "https://files.pythonhosted.org/packages/04/c6/4ea3b9859d0758ab1eb9c696e982365ffb758307ae6f5b3dc12eedf863de/generalize-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "46dab2e9ded8defa89ebc91ee6cd7736cb1aeb59ad4dac5bc5870b06c2a785eb",
                "md5": "e274b06710643f7e6d6d7393ecbf270b",
                "sha256": "c8ec622781cc4372450443cb7a8ed6e382e5fe27505d44cad9cabe2d3852242d"
            },
            "downloads": -1,
            "filename": "generalize-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "e274b06710643f7e6d6d7393ecbf270b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 121503,
            "upload_time": "2024-12-05T23:15:50",
            "upload_time_iso_8601": "2024-12-05T23:15:50.801717Z",
            "url": "https://files.pythonhosted.org/packages/46/da/b2e9ded8defa89ebc91ee6cd7736cb1aeb59ad4dac5bc5870b06c2a785eb/generalize-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-05 23:15:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ludvigolsen",
    "github_project": "generalize",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "generalize"
}
        
Elapsed time: 0.83731s