geo-optimizer


Namegeo-optimizer JSON
Version 1.1.0 PyPI version JSON
download
home_pageNone
SummaryGEO: Genetic & Evolutionary Optimizer — A Neural Network Training framework.
upload_time2025-07-25 12:36:18
maintainerNone
docs_urlNone
authorMrPsyghost (Shivay)
requires_python>=3.10
licenseNone
keywords neural networks evolution optimizer genetic algorithm deep learning pytorch neuroevolution geo
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GEO-OPTIMIZER
**Genetic & Evolutionary Optimizer for Neural Networks**

> A minimal, fully-customizable, mutation-based neural network optimizer inspired by evolutionary algorithms. No gradient descent. Just evolution.

---

## What is GEO-OPTIMIZER?

**GEO (Genetic and Evolutionary Optimizer)** is a lightweight PyTorch-based framework for training neural networks using **evolutionary strategies** instead of traditional backpropagation.

- **No gradients**
- **No backward()**
- Works with any activation/loss functions
- Optimizes with mutation, selection, and survival of the fittest

---

## How It Works

At each generation:
1. A **population** of mutated neural networks is generated.
2. Each network is evaluated using a **loss function**.
3. The **top 2 performers** are selected.
4. New weights are **blended and passed** to the next generation.

---

## Installation

```bash
pip install geo-optimizer

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "geo-optimizer",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "neural networks, evolution, optimizer, genetic algorithm, deep learning, pytorch, neuroevolution, geo",
    "author": "MrPsyghost (Shivay)",
    "author_email": "shivaypuri2000@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/41/d6/055cdf937e5c498c473ccecee62537d8377c58119cde1c89f50bba971d0a/geo-optimizer-1.1.0.tar.gz",
    "platform": null,
    "description": "# GEO-OPTIMIZER\r\n**Genetic & Evolutionary Optimizer for Neural Networks**\r\n\r\n> A minimal, fully-customizable, mutation-based neural network optimizer inspired by evolutionary algorithms. No gradient descent. Just evolution.\r\n\r\n---\r\n\r\n## What is GEO-OPTIMIZER?\r\n\r\n**GEO (Genetic and Evolutionary Optimizer)** is a lightweight PyTorch-based framework for training neural networks using **evolutionary strategies** instead of traditional backpropagation.\r\n\r\n- **No gradients**\r\n- **No backward()**\r\n- Works with any activation/loss functions\r\n- Optimizes with mutation, selection, and survival of the fittest\r\n\r\n---\r\n\r\n## How It Works\r\n\r\nAt each generation:\r\n1. A **population** of mutated neural networks is generated.\r\n2. Each network is evaluated using a **loss function**.\r\n3. The **top 2 performers** are selected.\r\n4. New weights are **blended and passed** to the next generation.\r\n\r\n---\r\n\r\n## Installation\r\n\r\n```bash\r\npip install geo-optimizer\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "GEO: Genetic & Evolutionary Optimizer \u2014 A Neural Network Training framework.",
    "version": "1.1.0",
    "project_urls": {
        "YouTube": "https://www.youtube.com/@MrPsyghost"
    },
    "split_keywords": [
        "neural networks",
        " evolution",
        " optimizer",
        " genetic algorithm",
        " deep learning",
        " pytorch",
        " neuroevolution",
        " geo"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "023382709f2f60fdd54e5375b4d467f65e90855f5ef02de1096a3d168a05aea4",
                "md5": "7b29f7e787fbea3f6fee99fd15e8ebf8",
                "sha256": "dedcd47202bf83bb56df6a3bfc9fbcd4d159c27a8902b250fb27033789d8ab42"
            },
            "downloads": -1,
            "filename": "geo_optimizer-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7b29f7e787fbea3f6fee99fd15e8ebf8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 6283,
            "upload_time": "2025-07-25T12:36:17",
            "upload_time_iso_8601": "2025-07-25T12:36:17.150272Z",
            "url": "https://files.pythonhosted.org/packages/02/33/82709f2f60fdd54e5375b4d467f65e90855f5ef02de1096a3d168a05aea4/geo_optimizer-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "41d6055cdf937e5c498c473ccecee62537d8377c58119cde1c89f50bba971d0a",
                "md5": "e0a849f99a3bfea08c461df1754980ad",
                "sha256": "66debfe11a649e40137320439385053668f4f878193a0847ed786924e77a4832"
            },
            "downloads": -1,
            "filename": "geo-optimizer-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "e0a849f99a3bfea08c461df1754980ad",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 6582,
            "upload_time": "2025-07-25T12:36:18",
            "upload_time_iso_8601": "2025-07-25T12:36:18.164796Z",
            "url": "https://files.pythonhosted.org/packages/41/d6/055cdf937e5c498c473ccecee62537d8377c58119cde1c89f50bba971d0a/geo-optimizer-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-25 12:36:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "geo-optimizer"
}
        
Elapsed time: 0.83243s