geodatasets


Namegeodatasets JSON
Version 2024.8.0 PyPI version JSON
download
home_pageNone
SummarySpatial data examples
upload_time2024-08-30 14:35:31
maintainergeodatasets contributors
docs_urlNone
authorNone
requires_python>=3.8
licenseBSD 3-Clause
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # geodatasets

Fetch links or download and cache spatial data example files.

The `geodatasets` contains an API on top of a JSON with metadata of externally hosted
datasets containing geospatial information useful for illustrative and educational
purposes.

See the documentation at [geodatasets.readthedocs.io/](https://geodatasets.readthedocs.io/).

## Install

From PyPI:

```sh
pip install geodatasets
```

or using `conda` or `mamba` from conda-forge:

```sh
conda install geodatasets -c conda-forge
```

The development version can be installed using `pip` from GitHub.

```sh
pip install git+https://github.com/geopandas/geodatasets.git
```

## How to use

The package comes with a database of datasets. To see all:

```py
In [1]: import geodatasets

In [2]: geodatasets.data
Out[2]:
{'geoda': {'airbnb': {'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',
   'license': 'NA',
   'attribution': 'Center for Spatial Data Science, University of Chicago',
   'name': 'geoda.airbnb',
   'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',
   'geometry_type': 'Polygon',
   'nrows': 77,
   'ncols': 21,
   'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',
   'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',
   'filename': 'airbnb.zip'},
  'atlanta': {'url': 'https://geodacenter.github.io/data-and-lab//data/atlanta_hom.zip',
   'license': 'NA',
   'attribution': 'Center for Spatial Data Science, University of Chicago',
   'name': 'geoda.atlanta',
   'description': 'Atlanta, GA region homicide counts and rates',
   'geometry_type': 'Polygon',
   'nrows': 90,
   'ncols': 24,
   'details': 'https://geodacenter.github.io/data-and-lab//atlanta_old/',
   'hash': 'a33a76e12168fe84361e60c88a9df4856730487305846c559715c89b1a2b5e09',
   'filename': 'atlanta_hom.zip',
   'members': ['atlanta_hom/atl_hom.geojson']},
   ...
```

There is also a convenient top-level API. One to get only the URL:

```py
In [3]: geodatasets.get_url("geoda airbnb")
Out[3]: 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip'
```

And one to get the local path. If the file is not available in the cache, it will be
downloaded first.

```py
In [4]: geodatasets.get_path('geoda airbnb')
Out[4]: '/Users/martin/Library/Caches/geodatasets/airbnb.zip'
```

You can also get all the details:

```py
In [5]: geodatasets.data.geoda.airbnb
Out[5]:
{'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',
 'license': 'NA',
 'attribution': 'Center for Spatial Data Science, University of Chicago',
 'name': 'geoda.airbnb',
 'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',
 'geometry_type': 'Polygon',
 'nrows': 77,
 'ncols': 21,
 'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',
 'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',
 'filename': 'airbnb.zip'}
```

Or using the name query:

```py
In [6]: geodatasets.data.query_name('geoda airbnb')
Out[6]:
{'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',
 'license': 'NA',
 'attribution': 'Center for Spatial Data Science, University of Chicago',
 'name': 'geoda.airbnb',
 'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',
 'geometry_type': 'Polygon',
 'nrows': 77,
 'ncols': 21,
 'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',
 'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',
 'filename': 'airbnb.zip'}
```

The whole structure `Bunch` class is based on a dictionary and can be flattened. If you want
to see all available datasets, you can use:

```py
In [7]: geodatasets.data.flatten().keys()
Out[7]: dict_keys(['geoda.airbnb', 'geoda.atlanta', 'geoda.cars', 'geoda.charleston1', 'geoda.charleston2', 'geoda.chicago_health', 'geoda.chicago_commpop', 'geoda.chile_labor', 'geoda.cincinnati', 'geoda.cleveland', 'geoda.columbus', 'geoda.grid100', 'geoda.groceries', 'geoda.guerry', 'geoda.health', 'geoda.health_indicators', 'geoda.hickory1', 'geoda.hickory2', 'geoda.home_sales', 'geoda.houston', 'geoda.juvenile', 'geoda.lansing1', 'geoda.lansing2', 'geoda.lasrosas', 'geoda.liquor_stores', 'geoda.malaria', 'geoda.milwaukee1', 'geoda.milwaukee2', 'geoda.ncovr', 'geoda.natregimes', 'geoda.ndvi', 'geoda.nepal', 'geoda.nyc', 'geoda.nyc_earnings', 'geoda.nyc_education', 'geoda.nyc_neighborhoods', 'geoda.orlando1', 'geoda.orlando2', 'geoda.oz9799', 'geoda.phoenix_acs', 'geoda.police', 'geoda.sacramento1', 'geoda.sacramento2', 'geoda.savannah1', 'geoda.savannah2', 'geoda.seattle1', 'geoda.seattle2', 'geoda.sids', 'geoda.sids2', 'geoda.south', 'geoda.spirals', 'geoda.stlouis', 'geoda.tampa1', 'geoda.us_sdoh', 'ny.bb', 'eea.large_rivers', 'naturalearth.land'])
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "geodatasets",
    "maintainer": "geodatasets contributors",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Martin Fleischmann <martin@martinfleischmann.net>",
    "download_url": "https://files.pythonhosted.org/packages/c5/19/37a772bf09a9758eb1c09ed9ad6a11dcf0435dadd89bc46e3f78d709f353/geodatasets-2024.8.0.tar.gz",
    "platform": null,
    "description": "# geodatasets\n\nFetch links or download and cache spatial data example files.\n\nThe `geodatasets` contains an API on top of a JSON with metadata of externally hosted\ndatasets containing geospatial information useful for illustrative and educational\npurposes.\n\nSee the documentation at [geodatasets.readthedocs.io/](https://geodatasets.readthedocs.io/).\n\n## Install\n\nFrom PyPI:\n\n```sh\npip install geodatasets\n```\n\nor using `conda` or `mamba` from conda-forge:\n\n```sh\nconda install geodatasets -c conda-forge\n```\n\nThe development version can be installed using `pip` from GitHub.\n\n```sh\npip install git+https://github.com/geopandas/geodatasets.git\n```\n\n## How to use\n\nThe package comes with a database of datasets. To see all:\n\n```py\nIn [1]: import geodatasets\n\nIn [2]: geodatasets.data\nOut[2]:\n{'geoda': {'airbnb': {'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',\n   'license': 'NA',\n   'attribution': 'Center for Spatial Data Science, University of Chicago',\n   'name': 'geoda.airbnb',\n   'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',\n   'geometry_type': 'Polygon',\n   'nrows': 77,\n   'ncols': 21,\n   'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',\n   'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',\n   'filename': 'airbnb.zip'},\n  'atlanta': {'url': 'https://geodacenter.github.io/data-and-lab//data/atlanta_hom.zip',\n   'license': 'NA',\n   'attribution': 'Center for Spatial Data Science, University of Chicago',\n   'name': 'geoda.atlanta',\n   'description': 'Atlanta, GA region homicide counts and rates',\n   'geometry_type': 'Polygon',\n   'nrows': 90,\n   'ncols': 24,\n   'details': 'https://geodacenter.github.io/data-and-lab//atlanta_old/',\n   'hash': 'a33a76e12168fe84361e60c88a9df4856730487305846c559715c89b1a2b5e09',\n   'filename': 'atlanta_hom.zip',\n   'members': ['atlanta_hom/atl_hom.geojson']},\n   ...\n```\n\nThere is also a convenient top-level API. One to get only the URL:\n\n```py\nIn [3]: geodatasets.get_url(\"geoda airbnb\")\nOut[3]: 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip'\n```\n\nAnd one to get the local path. If the file is not available in the cache, it will be\ndownloaded first.\n\n```py\nIn [4]: geodatasets.get_path('geoda airbnb')\nOut[4]: '/Users/martin/Library/Caches/geodatasets/airbnb.zip'\n```\n\nYou can also get all the details:\n\n```py\nIn [5]: geodatasets.data.geoda.airbnb\nOut[5]:\n{'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',\n 'license': 'NA',\n 'attribution': 'Center for Spatial Data Science, University of Chicago',\n 'name': 'geoda.airbnb',\n 'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',\n 'geometry_type': 'Polygon',\n 'nrows': 77,\n 'ncols': 21,\n 'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',\n 'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',\n 'filename': 'airbnb.zip'}\n```\n\nOr using the name query:\n\n```py\nIn [6]: geodatasets.data.query_name('geoda airbnb')\nOut[6]:\n{'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',\n 'license': 'NA',\n 'attribution': 'Center for Spatial Data Science, University of Chicago',\n 'name': 'geoda.airbnb',\n 'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',\n 'geometry_type': 'Polygon',\n 'nrows': 77,\n 'ncols': 21,\n 'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',\n 'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',\n 'filename': 'airbnb.zip'}\n```\n\nThe whole structure `Bunch` class is based on a dictionary and can be flattened. If you want\nto see all available datasets, you can use:\n\n```py\nIn [7]: geodatasets.data.flatten().keys()\nOut[7]: dict_keys(['geoda.airbnb', 'geoda.atlanta', 'geoda.cars', 'geoda.charleston1', 'geoda.charleston2', 'geoda.chicago_health', 'geoda.chicago_commpop', 'geoda.chile_labor', 'geoda.cincinnati', 'geoda.cleveland', 'geoda.columbus', 'geoda.grid100', 'geoda.groceries', 'geoda.guerry', 'geoda.health', 'geoda.health_indicators', 'geoda.hickory1', 'geoda.hickory2', 'geoda.home_sales', 'geoda.houston', 'geoda.juvenile', 'geoda.lansing1', 'geoda.lansing2', 'geoda.lasrosas', 'geoda.liquor_stores', 'geoda.malaria', 'geoda.milwaukee1', 'geoda.milwaukee2', 'geoda.ncovr', 'geoda.natregimes', 'geoda.ndvi', 'geoda.nepal', 'geoda.nyc', 'geoda.nyc_earnings', 'geoda.nyc_education', 'geoda.nyc_neighborhoods', 'geoda.orlando1', 'geoda.orlando2', 'geoda.oz9799', 'geoda.phoenix_acs', 'geoda.police', 'geoda.sacramento1', 'geoda.sacramento2', 'geoda.savannah1', 'geoda.savannah2', 'geoda.seattle1', 'geoda.seattle2', 'geoda.sids', 'geoda.sids2', 'geoda.south', 'geoda.spirals', 'geoda.stlouis', 'geoda.tampa1', 'geoda.us_sdoh', 'ny.bb', 'eea.large_rivers', 'naturalearth.land'])\n```\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause",
    "summary": "Spatial data examples",
    "version": "2024.8.0",
    "project_urls": {
        "Home": "https://github.com/geopandas/geodatasets",
        "Repository": "https://github.com/geopandas/geodatasets"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9ddde30e144271280d263c0c10f34fbcf2e09e9a82bd11a165c5f1f498899a29",
                "md5": "12e1251d515c2540f5ef1c41bfb35e4f",
                "sha256": "fd2a91618277553dbb180496bb952d496e4bc99e8c0066c5dc06701d66d53540"
            },
            "downloads": -1,
            "filename": "geodatasets-2024.8.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "12e1251d515c2540f5ef1c41bfb35e4f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 20029,
            "upload_time": "2024-08-30T14:35:29",
            "upload_time_iso_8601": "2024-08-30T14:35:29.822482Z",
            "url": "https://files.pythonhosted.org/packages/9d/dd/e30e144271280d263c0c10f34fbcf2e09e9a82bd11a165c5f1f498899a29/geodatasets-2024.8.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c51937a772bf09a9758eb1c09ed9ad6a11dcf0435dadd89bc46e3f78d709f353",
                "md5": "809608a9a8deb0fc9edc0f20bf284117",
                "sha256": "ea1b0f885f1b3305d4a308b2ddee042e425c5288b5ff6b00e6b0ac74a4d5e8d9"
            },
            "downloads": -1,
            "filename": "geodatasets-2024.8.0.tar.gz",
            "has_sig": false,
            "md5_digest": "809608a9a8deb0fc9edc0f20bf284117",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 457760,
            "upload_time": "2024-08-30T14:35:31",
            "upload_time_iso_8601": "2024-08-30T14:35:31.198714Z",
            "url": "https://files.pythonhosted.org/packages/c5/19/37a772bf09a9758eb1c09ed9ad6a11dcf0435dadd89bc46e3f78d709f353/geodatasets-2024.8.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-30 14:35:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "geopandas",
    "github_project": "geodatasets",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "geodatasets"
}
        
Elapsed time: 0.56583s