geopip


Namegeopip JSON
Version 2.0.0 PyPI version JSON
download
home_pagehttps://github.com/tammoippen/geopip
SummaryReverse geocode a lng/lat coordinate within a geojson FeatureCollection.
upload_time2023-10-17 17:29:27
maintainer
docs_urlNone
authorTammo Ippen
requires_python>=3.7,<4.0
licenseMIT
keywords geojson point in polygon reverse geocode countries
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GEOPIP: Geojson Point in Polygon (PIP)

[![CI](https://github.com/tammoippen/geopip/actions/workflows/CI.yml/badge.svg)](https://github.com/tammoippen/geopip/actions/workflows/CI.yml)
[![Coverage Status](https://coveralls.io/repos/github/tammoippen/geopip/badge.svg?branch=master)](https://coveralls.io/github/tammoippen/geopip?branch=master)
[![Tested CPython Versions](https://img.shields.io/badge/cpython-3.7%2C%203.8%2C%203.9%2C%203.10%2C%203.11%2C%203.12-brightgreen.svg)](https://img.shields.io/badge/cpython-3.7%2C%203.8%2C%203.9%2C%203.10%2C%203.11%2C%203.12-brightgreen.svg)
[![Tested PyPy Versions](https://img.shields.io/badge/pypy-3.9%2C%203.10-brightgreen.svg)](https://img.shields.io/badge/pypy-3.9%2C%203.10-brightgreen.svg)
[![PyPi version](https://img.shields.io/pypi/v/geopip.svg)](https://pypi.python.org/pypi/geopip)
[![PyPi license](https://img.shields.io/pypi/l/geopip.svg)](https://pypi.python.org/pypi/geopip)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

Reverse geocode a lng/lat coordinate within a geojson `FeatureCollection` and return information about the containing country (polygon).

Basically, you can use any [geojson](https://tools.ietf.org/html/rfc7946) file (top level is a `FeatureCollection`) for reverse coding - set the environment variable `REVERSE_GEOCODE_DATA` to the geojson file. Only `Polygon` and `MultiPolygon` features will be used! If a point is found to be in a feature, the `properties` of that feature will be returned.

In other words, provide a geojson with postcode boundaries, and you can query for the postcode in which a coordinate is. Provide timezone boundaries and you can find the timezone for a coordinate. Be creative :).

The default shape data (contained within the package) is from [thematicmapping](http://thematicmapping.org/downloads/world_borders.php) (the simple shapes). It contains polygons representing one country with the following meta-data (`properties`):
```
FIPS      String(2)         FIPS 10-4 Country Code
ISO2      String(2)         ISO 3166-1 Alpha-2 Country Code
ISO3      String(3)         ISO 3166-1 Alpha-3 Country Code
UN        Short Integer(3)  ISO 3166-1 Numeric-3 Country Code
NAME      String(50)        Name of country/area
AREA      Long Integer(7)   Land area, FAO Statistics (2002)
POP2005   Double(10,0)      Population, World Population Prospects (2005)
REGION    Short Integer(3)  Macro geographical (continental region), UN Statistics
SUBREGION Short Integer(3)  Geographical sub-region, UN Statistics
LON       FLOAT (7,3)       Longitude
LAT       FLOAT (6,3)       Latitude
```

Hence, you can use this package as an *offline reverse geocoder on the country level* (by default):
```python
In [1]: import geopip
In [2]: geopip.search(lng=4.910248, lat=50.850981)
Out[2]:
{'AREA': 0,
 'FIPS': 'BE',
 'ISO2': 'BE',
 'ISO3': 'BEL',
 'LAT': 50.643,
 'LON': 4.664,
 'NAME': 'Belgium',
 'POP2005': 10398049,
 'REGION': 150,
 'SUBREGION': 155,
 'UN': 56}
```

**NOTE**: Since the polygons for each country are quite simple, reverse geocoding at the borders of two countrys is **not** exact. Use polygons with higher resolution for these use cases (see [Data](#data)).

The `shapely` package will be used, if installed. Otherwise, a pure python implementation will be used (on the basis of [winding numbers](https://en.wikipedia.org/wiki/Winding_number)). See [here](https://www.toptal.com/python/computational-geometry-in-python-from-theory-to-implementation), [here](http://geomalgorithms.com/a03-_inclusion.html) and [here](http://www.dgp.toronto.edu/~mac/e-stuff/point_in_polygon.py) for more informations and example implementations. Espacially for larger features, the shapely implementation might give performance improvements (default shape data and 2.6 GHz Intel Core i7, python3.6.2, cythonized version of [geohash-hilbert](https://github.com/tammoippen/geohash-hilbert)):

*Pure*:
```python
In [1]: import geopip
In [2]: geopip._geopip.p_in_polygon?
Signature: geopip._geopip.p_in_polygon(p, shp)
Docstring:
Test, whether point `p` is in shape `shp`.

Use the pure python implementation for this.

Parameters:
    p: Tuple[float, float]  Point (lng, lat) in WGS84.
    shp: Dict[str, Any]     Prepared shape dictionary from `geopip._pure.prepare()`.

Returns:
    boolean: True, if p in shp, False otherwise
File:      ~/repositories/geopip/geopip/_pure.py
Type:      function
In [3]: %timeit geopip.search(4.910248, 50.850981)
25.6 µs ± 390 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```

*Shapely*:
```python
In [1]: import geopip
In [2]: geopip_geopip.p_in_polygon?
Signature: geopip._geopip.p_in_polygon(p, shp)
Docstring:
Test, whether point `p` is in shape `shp`.

Use the shapely implementation for this.

Parameters:
    p: Tuple[float, float]  Point (lng, lat) in WGS84.
    shp: Dict[str, Any]     Prepared shape dictionary from `geopip._shapely.prepare()`.

Returns:
    boolean: True, if p in shp, False otherwise
File:      ~/repositories/geopip/geopip/_shapely.py
Type:      function
In [3]: %timeit geopip.search(4.910248, 50.850981)
50 µs ± 601 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```

For simple geojsons, the pure python implementation is faster, but on more complex polygons, the shapely implementation will win.

## Install
```sh
pip install geopip
```

If you require the extra speed, because you have many polygons and / or very detailed polygons, try installing geohash-hilbert with Cython extensions and / or have (vectorized) shapely installed.
```sh
# make sure to have GEOS library installed (including dev extensions)
pip install numpy 'shapely[vectorized]>=1.6'

pip install cython  # for building geohash-hilbert's cython extension
pip install --upgrade geohash-hilbert
```

## Data

Other interesting shape data can be found at:

- http://www.naturalearthdata.com/downloads/ : Different thematic shape files at 10m, 50m and 110m resolution.
- http://www.gadm.org/version2 : Administrative area 0 or 1 contain contries or states, respectively. Attention to the license!
- https://www2.census.gov/geo/tiger/: Various shape/gdb files and information for USA.
- http://guides.library.upenn.edu/c.php?g=475518&p=3254770: Links to various geoinformation data.
- http://thematicmapping.org/downloads/world_borders.php: Country borders and some interesting information. The default file is from here. There is also a higher resolution version.
- https://github.com/evansiroky/timezone-boundary-builder: Time zone boundaries. See releases for downloads.
- https://www.suche-postleitzahl.org/plz-karte-erstellen: DE postalcodes + size + population (Census / OSM).
- https://www2.census.gov/geo/tiger/TIGER2010DP1/ZCTA_2010Census_DP1.zip: US postalcodes + size + population (Census; field definition see `DP_TableDescriptions.xls` in the zip).
- https://github.com/berlinermorgenpost/Berlin-Geodaten: Geo shapes of Berlin, DE.
- https://github.com/gregoiredavid/france-geojson: Geojson of regions, arrondissements, ... France.
- https://data.opendatasoft.com/explore/dataset/arrondissements@parisdata/: Geojson of arrondissements of Paris, FR.
- https://data.opendatasoft.com/pages/home/: Lots of different data, some have geojson, see above.

**NOTE**: shapefiles / gdb databases have to be transformed into geojson. One way is to use [fiona](https://github.com/Toblerity/Fiona). Assuming the gdb files are in the directory `/data/gdb`:

```python
fio insp /data/gdb
# a python shell opens
>>> import json
>>> features = []
>>> for feat in src:
...     features += [feat]
...
>>> f = open('/data/gdb.geo.json', 'w')
>>> json.dump(dict(type='FeatureCollection', features=features), f)
>>> f.close()
```
Then the `gdb` will be transformed into a geojson file `gdb.geo.json`.

# Documentation

(*TODO* more)
Basically, there are the two functions `geopip.search` and `geopip.search_all` that perform the search in the provided `FeatureCollection`. Then there is the class `geopip.GeoPIP` that accepts a `FeatureCollection` either as a file or a dictionary and provides the same search functionality:

## `search`
```python
In [1]: import geopip
In [2]: geopip.search?
Signature: geopip.search(lng, lat)
Docstring:
Reverse geocode lng/lat coordinate within the features from `instance().shapes`.

Look within the features from the `instance().shapes` function for a polygon that
contains the point (lng, lat). From the first found feature the `porperties`
will be returned. `None`, if no feature containes the point.

Parameters:
    lng: float  Longitude (-180, 180) of point. (WGS84)
    lat: float  Latitude (-90, 90) of point. (WGS84)

Returns:
    Dict[Any, Any]  `Properties` of found feature. `None` if nothing is found.
File:      ~/repositories/geopip/geopip/__init__.py
Type:      function
```

## `search_all`
```python
In [1]: import geopip
In [2]: geopip.search_all?
Signature: geopip.search_all(lng, lat)
Docstring:
Reverse geocode lng/lat coordinate within the features from `instance().shapes`.

Look within the features from the `instance().shapes` function for all polygon that
contains the point (lng, lat). From all found feature the `porperties`
will be returned (more or less sorted from smallest to largest feature).
`None`, if no feature containes the point.

Parameters:
    lng: float  Longitude (-180, 180) of point. (WGS84)
    lat: float  Latitude (-90, 90) of point. (WGS84)

Returns:
    Iterator[Dict[Any, Any]]  Iterator for `properties` of found features.
File:      ~/repositories/geopip/geopip/__init__.py
Type:      function
```

## `GeoPIP`
```python
In [1]: import geopip
In [2]: geopip.GeoPIP?
Init signature: geopip.GeoPIP(self, *args, **kwargs)
Docstring:
GeoPIP: Geojson Point in Polygon (PIP)

Reverse geocode a lng/lat coordinate within a geojson `FeatureCollection` and
return information about the containing polygon.
Init docstring:
Provide the geojson either as a file (`filename`) or as a geojson
dict (`geojson_dict`). If none of both is given, it tries to load the
file pointed to in the environment variable `REVERSE_GEOCODE_DATA`. If the
variable is not set, a default geojson will be loaded (packaged):
    http://thematicmapping.org/downloads/world_borders.php

During init, the geojson will be prepared (see pure / shapely implementation)
and indexed with geohashes.

Provide the parameters as kwargs!

Allowed parameters:
    filename: str                 Path to a geojson file.
    geojson_dict: Dict[str, Any]  Geojson dictionary. `FeatureCollection` required!
File:           ~/repositories/geopip/geopip/_geopip.py
Type:           type
```

A `GeoPIP` object provides the same `search` and `search_all` functions.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tammoippen/geopip",
    "name": "geopip",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7,<4.0",
    "maintainer_email": "",
    "keywords": "geojson,point in polygon,reverse geocode,countries",
    "author": "Tammo Ippen",
    "author_email": "tammo.ippen@posteo.de",
    "download_url": "https://files.pythonhosted.org/packages/57/3f/e59f9d56573e45d32db9f3876f7c176784860a171f5872c994047b18e786/geopip-2.0.0.tar.gz",
    "platform": null,
    "description": "# GEOPIP: Geojson Point in Polygon (PIP)\n\n[![CI](https://github.com/tammoippen/geopip/actions/workflows/CI.yml/badge.svg)](https://github.com/tammoippen/geopip/actions/workflows/CI.yml)\n[![Coverage Status](https://coveralls.io/repos/github/tammoippen/geopip/badge.svg?branch=master)](https://coveralls.io/github/tammoippen/geopip?branch=master)\n[![Tested CPython Versions](https://img.shields.io/badge/cpython-3.7%2C%203.8%2C%203.9%2C%203.10%2C%203.11%2C%203.12-brightgreen.svg)](https://img.shields.io/badge/cpython-3.7%2C%203.8%2C%203.9%2C%203.10%2C%203.11%2C%203.12-brightgreen.svg)\n[![Tested PyPy Versions](https://img.shields.io/badge/pypy-3.9%2C%203.10-brightgreen.svg)](https://img.shields.io/badge/pypy-3.9%2C%203.10-brightgreen.svg)\n[![PyPi version](https://img.shields.io/pypi/v/geopip.svg)](https://pypi.python.org/pypi/geopip)\n[![PyPi license](https://img.shields.io/pypi/l/geopip.svg)](https://pypi.python.org/pypi/geopip)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\nReverse geocode a lng/lat coordinate within a geojson `FeatureCollection` and return information about the containing country (polygon).\n\nBasically, you can use any [geojson](https://tools.ietf.org/html/rfc7946) file (top level is a `FeatureCollection`) for reverse coding - set the environment variable `REVERSE_GEOCODE_DATA` to the geojson file. Only `Polygon` and `MultiPolygon` features will be used! If a point is found to be in a feature, the `properties` of that feature will be returned.\n\nIn other words, provide a geojson with postcode boundaries, and you can query for the postcode in which a coordinate is. Provide timezone boundaries and you can find the timezone for a coordinate. Be creative :).\n\nThe default shape data (contained within the package) is from [thematicmapping](http://thematicmapping.org/downloads/world_borders.php) (the simple shapes). It contains polygons representing one country with the following meta-data (`properties`):\n```\nFIPS      String(2)         FIPS 10-4 Country Code\nISO2      String(2)         ISO 3166-1 Alpha-2 Country Code\nISO3      String(3)         ISO 3166-1 Alpha-3 Country Code\nUN        Short Integer(3)  ISO 3166-1 Numeric-3 Country Code\nNAME      String(50)        Name of country/area\nAREA      Long Integer(7)   Land area, FAO Statistics (2002)\nPOP2005   Double(10,0)      Population, World Population Prospects (2005)\nREGION    Short Integer(3)  Macro geographical (continental region), UN Statistics\nSUBREGION Short Integer(3)  Geographical sub-region, UN Statistics\nLON       FLOAT (7,3)       Longitude\nLAT       FLOAT (6,3)       Latitude\n```\n\nHence, you can use this package as an *offline reverse geocoder on the country level* (by default):\n```python\nIn [1]: import geopip\nIn [2]: geopip.search(lng=4.910248, lat=50.850981)\nOut[2]:\n{'AREA': 0,\n 'FIPS': 'BE',\n 'ISO2': 'BE',\n 'ISO3': 'BEL',\n 'LAT': 50.643,\n 'LON': 4.664,\n 'NAME': 'Belgium',\n 'POP2005': 10398049,\n 'REGION': 150,\n 'SUBREGION': 155,\n 'UN': 56}\n```\n\n**NOTE**: Since the polygons for each country are quite simple, reverse geocoding at the borders of two countrys is **not** exact. Use polygons with higher resolution for these use cases (see [Data](#data)).\n\nThe `shapely` package will be used, if installed. Otherwise, a pure python implementation will be used (on the basis of [winding numbers](https://en.wikipedia.org/wiki/Winding_number)). See [here](https://www.toptal.com/python/computational-geometry-in-python-from-theory-to-implementation), [here](http://geomalgorithms.com/a03-_inclusion.html) and [here](http://www.dgp.toronto.edu/~mac/e-stuff/point_in_polygon.py) for more informations and example implementations. Espacially for larger features, the shapely implementation might give performance improvements (default shape data and 2.6 GHz Intel Core i7, python3.6.2, cythonized version of [geohash-hilbert](https://github.com/tammoippen/geohash-hilbert)):\n\n*Pure*:\n```python\nIn [1]: import geopip\nIn [2]: geopip._geopip.p_in_polygon?\nSignature: geopip._geopip.p_in_polygon(p, shp)\nDocstring:\nTest, whether point `p` is in shape `shp`.\n\nUse the pure python implementation for this.\n\nParameters:\n    p: Tuple[float, float]  Point (lng, lat) in WGS84.\n    shp: Dict[str, Any]     Prepared shape dictionary from `geopip._pure.prepare()`.\n\nReturns:\n    boolean: True, if p in shp, False otherwise\nFile:      ~/repositories/geopip/geopip/_pure.py\nType:      function\nIn [3]: %timeit geopip.search(4.910248, 50.850981)\n25.6 \u00b5s \u00b1 390 ns per loop (mean \u00b1 std. dev. of 7 runs, 10000 loops each)\n```\n\n*Shapely*:\n```python\nIn [1]: import geopip\nIn [2]: geopip_geopip.p_in_polygon?\nSignature: geopip._geopip.p_in_polygon(p, shp)\nDocstring:\nTest, whether point `p` is in shape `shp`.\n\nUse the shapely implementation for this.\n\nParameters:\n    p: Tuple[float, float]  Point (lng, lat) in WGS84.\n    shp: Dict[str, Any]     Prepared shape dictionary from `geopip._shapely.prepare()`.\n\nReturns:\n    boolean: True, if p in shp, False otherwise\nFile:      ~/repositories/geopip/geopip/_shapely.py\nType:      function\nIn [3]: %timeit geopip.search(4.910248, 50.850981)\n50 \u00b5s \u00b1 601 ns per loop (mean \u00b1 std. dev. of 7 runs, 10000 loops each)\n```\n\nFor simple geojsons, the pure python implementation is faster, but on more complex polygons, the shapely implementation will win.\n\n## Install\n```sh\npip install geopip\n```\n\nIf you require the extra speed, because you have many polygons and / or very detailed polygons, try installing geohash-hilbert with Cython extensions and / or have (vectorized) shapely installed.\n```sh\n# make sure to have GEOS library installed (including dev extensions)\npip install numpy 'shapely[vectorized]>=1.6'\n\npip install cython  # for building geohash-hilbert's cython extension\npip install --upgrade geohash-hilbert\n```\n\n## Data\n\nOther interesting shape data can be found at:\n\n- http://www.naturalearthdata.com/downloads/ : Different thematic shape files at 10m, 50m and 110m resolution.\n- http://www.gadm.org/version2 : Administrative area 0 or 1 contain contries or states, respectively. Attention to the license!\n- https://www2.census.gov/geo/tiger/: Various shape/gdb files and information for USA.\n- http://guides.library.upenn.edu/c.php?g=475518&p=3254770: Links to various geoinformation data.\n- http://thematicmapping.org/downloads/world_borders.php: Country borders and some interesting information. The default file is from here. There is also a higher resolution version.\n- https://github.com/evansiroky/timezone-boundary-builder: Time zone boundaries. See releases for downloads.\n- https://www.suche-postleitzahl.org/plz-karte-erstellen: DE postalcodes + size + population (Census / OSM).\n- https://www2.census.gov/geo/tiger/TIGER2010DP1/ZCTA_2010Census_DP1.zip: US postalcodes + size + population (Census; field definition see `DP_TableDescriptions.xls` in the zip).\n- https://github.com/berlinermorgenpost/Berlin-Geodaten: Geo shapes of Berlin, DE.\n- https://github.com/gregoiredavid/france-geojson: Geojson of regions, arrondissements, ... France.\n- https://data.opendatasoft.com/explore/dataset/arrondissements@parisdata/: Geojson of arrondissements of Paris, FR.\n- https://data.opendatasoft.com/pages/home/: Lots of different data, some have geojson, see above.\n\n**NOTE**: shapefiles / gdb databases have to be transformed into geojson. One way is to use [fiona](https://github.com/Toblerity/Fiona). Assuming the gdb files are in the directory `/data/gdb`:\n\n```python\nfio insp /data/gdb\n# a python shell opens\n>>> import json\n>>> features = []\n>>> for feat in src:\n...     features += [feat]\n...\n>>> f = open('/data/gdb.geo.json', 'w')\n>>> json.dump(dict(type='FeatureCollection', features=features), f)\n>>> f.close()\n```\nThen the `gdb` will be transformed into a geojson file `gdb.geo.json`.\n\n# Documentation\n\n(*TODO* more)\nBasically, there are the two functions `geopip.search` and `geopip.search_all` that perform the search in the provided `FeatureCollection`. Then there is the class `geopip.GeoPIP` that accepts a `FeatureCollection` either as a file or a dictionary and provides the same search functionality:\n\n## `search`\n```python\nIn [1]: import geopip\nIn [2]: geopip.search?\nSignature: geopip.search(lng, lat)\nDocstring:\nReverse geocode lng/lat coordinate within the features from `instance().shapes`.\n\nLook within the features from the `instance().shapes` function for a polygon that\ncontains the point (lng, lat). From the first found feature the `porperties`\nwill be returned. `None`, if no feature containes the point.\n\nParameters:\n    lng: float  Longitude (-180, 180) of point. (WGS84)\n    lat: float  Latitude (-90, 90) of point. (WGS84)\n\nReturns:\n    Dict[Any, Any]  `Properties` of found feature. `None` if nothing is found.\nFile:      ~/repositories/geopip/geopip/__init__.py\nType:      function\n```\n\n## `search_all`\n```python\nIn [1]: import geopip\nIn [2]: geopip.search_all?\nSignature: geopip.search_all(lng, lat)\nDocstring:\nReverse geocode lng/lat coordinate within the features from `instance().shapes`.\n\nLook within the features from the `instance().shapes` function for all polygon that\ncontains the point (lng, lat). From all found feature the `porperties`\nwill be returned (more or less sorted from smallest to largest feature).\n`None`, if no feature containes the point.\n\nParameters:\n    lng: float  Longitude (-180, 180) of point. (WGS84)\n    lat: float  Latitude (-90, 90) of point. (WGS84)\n\nReturns:\n    Iterator[Dict[Any, Any]]  Iterator for `properties` of found features.\nFile:      ~/repositories/geopip/geopip/__init__.py\nType:      function\n```\n\n## `GeoPIP`\n```python\nIn [1]: import geopip\nIn [2]: geopip.GeoPIP?\nInit signature: geopip.GeoPIP(self, *args, **kwargs)\nDocstring:\nGeoPIP: Geojson Point in Polygon (PIP)\n\nReverse geocode a lng/lat coordinate within a geojson `FeatureCollection` and\nreturn information about the containing polygon.\nInit docstring:\nProvide the geojson either as a file (`filename`) or as a geojson\ndict (`geojson_dict`). If none of both is given, it tries to load the\nfile pointed to in the environment variable `REVERSE_GEOCODE_DATA`. If the\nvariable is not set, a default geojson will be loaded (packaged):\n    http://thematicmapping.org/downloads/world_borders.php\n\nDuring init, the geojson will be prepared (see pure / shapely implementation)\nand indexed with geohashes.\n\nProvide the parameters as kwargs!\n\nAllowed parameters:\n    filename: str                 Path to a geojson file.\n    geojson_dict: Dict[str, Any]  Geojson dictionary. `FeatureCollection` required!\nFile:           ~/repositories/geopip/geopip/_geopip.py\nType:           type\n```\n\nA `GeoPIP` object provides the same `search` and `search_all` functions.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Reverse geocode a lng/lat coordinate within a geojson FeatureCollection.",
    "version": "2.0.0",
    "project_urls": {
        "Homepage": "https://github.com/tammoippen/geopip",
        "Repository": "https://github.com/tammoippen/geopip"
    },
    "split_keywords": [
        "geojson",
        "point in polygon",
        "reverse geocode",
        "countries"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "573fe59f9d56573e45d32db9f3876f7c176784860a171f5872c994047b18e786",
                "md5": "fca3ecdaee147e00de7d4abc502eee4a",
                "sha256": "06a93399a47ac4a6292dd9ab05f89912d17dc0d75c5bdf1865f44845c78fb87d"
            },
            "downloads": -1,
            "filename": "geopip-2.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "fca3ecdaee147e00de7d4abc502eee4a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7,<4.0",
            "size": 355693,
            "upload_time": "2023-10-17T17:29:27",
            "upload_time_iso_8601": "2023-10-17T17:29:27.209969Z",
            "url": "https://files.pythonhosted.org/packages/57/3f/e59f9d56573e45d32db9f3876f7c176784860a171f5872c994047b18e786/geopip-2.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-17 17:29:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tammoippen",
    "github_project": "geopip",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "geopip"
}
        
Elapsed time: 0.31536s