ggplot


Nameggplot JSON
Version 0.11.5 PyPI version JSON
download
home_pagehttps://github.com/yhat/ggplot/
Summaryggplot for python
upload_time2016-09-29 16:56:59
maintainer
docs_urlNone
authorGreg Lamp
requires_python
licenseBSD
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ggplot
======

What is it?
~~~~~~~~~~~

``ggplot`` is a Python implementation of the grammar of graphics. It is
not intended to be a feature-for-feature port of
```ggplot2 for R`` <https://github.com/hadley/ggplot2>`__--though there
is much greatness in ``ggplot2``, the Python world could stand to
benefit from it. So there **will be feature overlap**, but not
neccessarily mimicry (after all, R is a little weird).

You can do cool things like this:

.. code:: python

    ggplot(diamonds, aes(x='price', color='clarity')) + \
        geom_density() + \
        scale_color_brewer(type='div', palette=7) + \
        facet_wrap('cut')

.. figure:: ./docs/example.png
   :alt: 

Installation
~~~~~~~~~~~~

.. code:: bash

    $ pip install -U ggplot
    # or 
    $ conda install -c conda-forge ggplot
    # or
    pip install git+https://github.com/yhat/ggplot.git

Examples
~~~~~~~~

Examples are the best way to learn. There is a Jupyter Notebook full of
them. There are also notebooks that show how to do particular things
with ggplot (i.e. `make a scatter
plot <./docs/how-to/Making%20a%20Scatter%20Plot.ipynb>`__ or `make a
histogram <./docs/how-to/Making%20a%20Scatter%20Plot.ipynb>`__).

-  `docs <./docs>`__
-  `gallery <./docs/Gallery.ipynb>`__
-  `various examples <./examples.md>`__

What happened to the old version that didn't work?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It's gone--the windows, the doors,
`everything <https://www.youtube.com/watch?v=YuxCKv_0GZc>`__. Just
kidding, `you can find it
here <https://github.com/yhat/ggplot/tree/v0.6.6>`__, though I'm not
sure why you'd want to look at it. The data grouping and manipulation
bits were re-written (so they actually worked) with things like facets
in mind.

Contributing
~~~~~~~~~~~~

Thanks to all of the ggplot
`contributors <./contributors.md#contributors>`__! See
*`contributing.md <./contributing.md>`__*.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/yhat/ggplot/",
    "name": "ggplot",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Greg Lamp",
    "author_email": "greg@yhathq.com",
    "download_url": "https://files.pythonhosted.org/packages/3f/a1/090033eb6be0f62350a2fa209e4813a194431997de6f5486366f5b55b992/ggplot-0.11.5.tar.gz",
    "platform": "",
    "description": "ggplot\n======\n\nWhat is it?\n~~~~~~~~~~~\n\n``ggplot`` is a Python implementation of the grammar of graphics. It is\nnot intended to be a feature-for-feature port of\n```ggplot2 for R`` <https://github.com/hadley/ggplot2>`__--though there\nis much greatness in ``ggplot2``, the Python world could stand to\nbenefit from it. So there **will be feature overlap**, but not\nneccessarily mimicry (after all, R is a little weird).\n\nYou can do cool things like this:\n\n.. code:: python\n\n    ggplot(diamonds, aes(x='price', color='clarity')) + \\\n        geom_density() + \\\n        scale_color_brewer(type='div', palette=7) + \\\n        facet_wrap('cut')\n\n.. figure:: ./docs/example.png\n   :alt: \n\nInstallation\n~~~~~~~~~~~~\n\n.. code:: bash\n\n    $ pip install -U ggplot\n    # or \n    $ conda install -c conda-forge ggplot\n    # or\n    pip install git+https://github.com/yhat/ggplot.git\n\nExamples\n~~~~~~~~\n\nExamples are the best way to learn. There is a Jupyter Notebook full of\nthem. There are also notebooks that show how to do particular things\nwith ggplot (i.e. `make a scatter\nplot <./docs/how-to/Making%20a%20Scatter%20Plot.ipynb>`__ or `make a\nhistogram <./docs/how-to/Making%20a%20Scatter%20Plot.ipynb>`__).\n\n-  `docs <./docs>`__\n-  `gallery <./docs/Gallery.ipynb>`__\n-  `various examples <./examples.md>`__\n\nWhat happened to the old version that didn't work?\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nIt's gone--the windows, the doors,\n`everything <https://www.youtube.com/watch?v=YuxCKv_0GZc>`__. Just\nkidding, `you can find it\nhere <https://github.com/yhat/ggplot/tree/v0.6.6>`__, though I'm not\nsure why you'd want to look at it. The data grouping and manipulation\nbits were re-written (so they actually worked) with things like facets\nin mind.\n\nContributing\n~~~~~~~~~~~~\n\nThanks to all of the ggplot\n`contributors <./contributors.md#contributors>`__! See\n*`contributing.md <./contributing.md>`__*.\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "ggplot for python",
    "version": "0.11.5",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "74b70dcf4cb13411dcd51c427f20598d",
                "sha256": "345cc6da684f4220e6da3f3042c7fc43e4784c26cc41fab30e92a55702b26e7b"
            },
            "downloads": -1,
            "filename": "ggplot-0.11.5-py2.7.egg",
            "has_sig": false,
            "md5_digest": "74b70dcf4cb13411dcd51c427f20598d",
            "packagetype": "bdist_egg",
            "python_version": "2.7",
            "requires_python": null,
            "size": 2329491,
            "upload_time": "2016-09-29T16:56:56",
            "upload_time_iso_8601": "2016-09-29T16:56:56.494151Z",
            "url": "https://files.pythonhosted.org/packages/0c/7a/60ea773fdd2f5bc7d989ec1d961a7199c99d1e508c8b9c6cd22c942400d9/ggplot-0.11.5-py2.7.egg",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "d0bfa0b6d02a988cd214b411542ea453",
                "sha256": "cd9648752d7e7a74dce263939067c6bfe46217dfd6472f08d0c68a22b5ad3c9a"
            },
            "downloads": -1,
            "filename": "ggplot-0.11.5-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d0bfa0b6d02a988cd214b411542ea453",
            "packagetype": "bdist_wheel",
            "python_version": "2.7",
            "requires_python": null,
            "size": 2210281,
            "upload_time": "2016-09-29T16:57:03",
            "upload_time_iso_8601": "2016-09-29T16:57:03.147596Z",
            "url": "https://files.pythonhosted.org/packages/48/04/5c88cc51c6713583f2dc78a5296adb9741505348c323d5875bc976143db2/ggplot-0.11.5-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "91a4925ec05f8452a79c1792b16038dc",
                "sha256": "48bbc9ea5987f815ad25856d76573506dbfe153ff696f026ce324582af56469f"
            },
            "downloads": -1,
            "filename": "ggplot-0.11.5.tar.gz",
            "has_sig": false,
            "md5_digest": "91a4925ec05f8452a79c1792b16038dc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 1948627,
            "upload_time": "2016-09-29T16:56:59",
            "upload_time_iso_8601": "2016-09-29T16:56:59.911160Z",
            "url": "https://files.pythonhosted.org/packages/3f/a1/090033eb6be0f62350a2fa209e4813a194431997de6f5486366f5b55b992/ggplot-0.11.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2016-09-29 16:56:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "yhat",
    "github_project": "ggplot",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ggplot"
}
        
Elapsed time: 0.02386s