ggplot
======
What is it?
~~~~~~~~~~~
``ggplot`` is a Python implementation of the grammar of graphics. It is
not intended to be a feature-for-feature port of
```ggplot2 for R`` <https://github.com/hadley/ggplot2>`__--though there
is much greatness in ``ggplot2``, the Python world could stand to
benefit from it. So there **will be feature overlap**, but not
neccessarily mimicry (after all, R is a little weird).
You can do cool things like this:
.. code:: python
ggplot(diamonds, aes(x='price', color='clarity')) + \
geom_density() + \
scale_color_brewer(type='div', palette=7) + \
facet_wrap('cut')
.. figure:: ./docs/example.png
:alt:
Installation
~~~~~~~~~~~~
.. code:: bash
$ pip install -U ggplot
# or
$ conda install -c conda-forge ggplot
# or
pip install git+https://github.com/yhat/ggplot.git
Examples
~~~~~~~~
Examples are the best way to learn. There is a Jupyter Notebook full of
them. There are also notebooks that show how to do particular things
with ggplot (i.e. `make a scatter
plot <./docs/how-to/Making%20a%20Scatter%20Plot.ipynb>`__ or `make a
histogram <./docs/how-to/Making%20a%20Scatter%20Plot.ipynb>`__).
- `docs <./docs>`__
- `gallery <./docs/Gallery.ipynb>`__
- `various examples <./examples.md>`__
What happened to the old version that didn't work?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's gone--the windows, the doors,
`everything <https://www.youtube.com/watch?v=YuxCKv_0GZc>`__. Just
kidding, `you can find it
here <https://github.com/yhat/ggplot/tree/v0.6.6>`__, though I'm not
sure why you'd want to look at it. The data grouping and manipulation
bits were re-written (so they actually worked) with things like facets
in mind.
Contributing
~~~~~~~~~~~~
Thanks to all of the ggplot
`contributors <./contributors.md#contributors>`__! See
*`contributing.md <./contributing.md>`__*.
Raw data
{
"_id": null,
"home_page": "https://github.com/yhat/ggplot/",
"name": "ggplot",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Greg Lamp",
"author_email": "greg@yhathq.com",
"download_url": "https://files.pythonhosted.org/packages/3f/a1/090033eb6be0f62350a2fa209e4813a194431997de6f5486366f5b55b992/ggplot-0.11.5.tar.gz",
"platform": "",
"description": "ggplot\n======\n\nWhat is it?\n~~~~~~~~~~~\n\n``ggplot`` is a Python implementation of the grammar of graphics. It is\nnot intended to be a feature-for-feature port of\n```ggplot2 for R`` <https://github.com/hadley/ggplot2>`__--though there\nis much greatness in ``ggplot2``, the Python world could stand to\nbenefit from it. So there **will be feature overlap**, but not\nneccessarily mimicry (after all, R is a little weird).\n\nYou can do cool things like this:\n\n.. code:: python\n\n ggplot(diamonds, aes(x='price', color='clarity')) + \\\n geom_density() + \\\n scale_color_brewer(type='div', palette=7) + \\\n facet_wrap('cut')\n\n.. figure:: ./docs/example.png\n :alt: \n\nInstallation\n~~~~~~~~~~~~\n\n.. code:: bash\n\n $ pip install -U ggplot\n # or \n $ conda install -c conda-forge ggplot\n # or\n pip install git+https://github.com/yhat/ggplot.git\n\nExamples\n~~~~~~~~\n\nExamples are the best way to learn. There is a Jupyter Notebook full of\nthem. There are also notebooks that show how to do particular things\nwith ggplot (i.e. `make a scatter\nplot <./docs/how-to/Making%20a%20Scatter%20Plot.ipynb>`__ or `make a\nhistogram <./docs/how-to/Making%20a%20Scatter%20Plot.ipynb>`__).\n\n- `docs <./docs>`__\n- `gallery <./docs/Gallery.ipynb>`__\n- `various examples <./examples.md>`__\n\nWhat happened to the old version that didn't work?\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nIt's gone--the windows, the doors,\n`everything <https://www.youtube.com/watch?v=YuxCKv_0GZc>`__. Just\nkidding, `you can find it\nhere <https://github.com/yhat/ggplot/tree/v0.6.6>`__, though I'm not\nsure why you'd want to look at it. The data grouping and manipulation\nbits were re-written (so they actually worked) with things like facets\nin mind.\n\nContributing\n~~~~~~~~~~~~\n\nThanks to all of the ggplot\n`contributors <./contributors.md#contributors>`__! See\n*`contributing.md <./contributing.md>`__*.\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "ggplot for python",
"version": "0.11.5",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "74b70dcf4cb13411dcd51c427f20598d",
"sha256": "345cc6da684f4220e6da3f3042c7fc43e4784c26cc41fab30e92a55702b26e7b"
},
"downloads": -1,
"filename": "ggplot-0.11.5-py2.7.egg",
"has_sig": false,
"md5_digest": "74b70dcf4cb13411dcd51c427f20598d",
"packagetype": "bdist_egg",
"python_version": "2.7",
"requires_python": null,
"size": 2329491,
"upload_time": "2016-09-29T16:56:56",
"upload_time_iso_8601": "2016-09-29T16:56:56.494151Z",
"url": "https://files.pythonhosted.org/packages/0c/7a/60ea773fdd2f5bc7d989ec1d961a7199c99d1e508c8b9c6cd22c942400d9/ggplot-0.11.5-py2.7.egg",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "d0bfa0b6d02a988cd214b411542ea453",
"sha256": "cd9648752d7e7a74dce263939067c6bfe46217dfd6472f08d0c68a22b5ad3c9a"
},
"downloads": -1,
"filename": "ggplot-0.11.5-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "d0bfa0b6d02a988cd214b411542ea453",
"packagetype": "bdist_wheel",
"python_version": "2.7",
"requires_python": null,
"size": 2210281,
"upload_time": "2016-09-29T16:57:03",
"upload_time_iso_8601": "2016-09-29T16:57:03.147596Z",
"url": "https://files.pythonhosted.org/packages/48/04/5c88cc51c6713583f2dc78a5296adb9741505348c323d5875bc976143db2/ggplot-0.11.5-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "91a4925ec05f8452a79c1792b16038dc",
"sha256": "48bbc9ea5987f815ad25856d76573506dbfe153ff696f026ce324582af56469f"
},
"downloads": -1,
"filename": "ggplot-0.11.5.tar.gz",
"has_sig": false,
"md5_digest": "91a4925ec05f8452a79c1792b16038dc",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 1948627,
"upload_time": "2016-09-29T16:56:59",
"upload_time_iso_8601": "2016-09-29T16:56:59.911160Z",
"url": "https://files.pythonhosted.org/packages/3f/a1/090033eb6be0f62350a2fa209e4813a194431997de6f5486366f5b55b992/ggplot-0.11.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2016-09-29 16:56:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "yhat",
"github_project": "ggplot",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "ggplot"
}