ghostvision


Nameghostvision JSON
Version 1.0.0b1 PyPI version JSON
download
home_pageNone
SummaryNear-real time detection of derelict (ghost) crab pots with side-scan sonar.
upload_time2025-10-08 12:47:05
maintainerNone
docs_urlNone
authorCameron Bodine
requires_python>=3.6
licenseNone
keywords pingmapper sonar ecology remotesensing sidescan sidescan-sonar aquatic humminbird lowrance gis oceanography limnology object-detection
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GhostVision

# 🚧**UNDER CONSTRUCTION**🚧

[![PyPI - Version](https://img.shields.io/pypi/v/ghostvision?style=flat-square&label=Latest%20Version%20(PyPi))](https://pypi.org/project/ghostvision/)
[![GitHub last commit](https://img.shields.io/github/last-commit/PINGEcosystem/GhostVision)](https://github.com/PINGEcosystem/GhostVision/commits)
[![GitHub commit activity](https://img.shields.io/github/commit-activity/m/PINGEcosystem/GhostVision)](https://github.com/PINGEcosystem/GhostVision/commits)
[![GitHub](https://img.shields.io/github/license/PINGEcosystem/GhostVision)](https://github.com/PINGEcosystem/GhostVision/blob/main/LICENSE)

Near-real time detection of derelict (ghost) crab pots with side-scan sonar.

![ezgif com-crop](https://github.com/user-attachments/assets/ece0602b-1edf-4a2a-88ec-9301b2483378)

## Overview

`GhostVision` is an open-source Python interface for automatically detecting and mapping ghost (derelict) crab pots from side-scan sonar imagery. `GhostVision` leverages [`Yolo`](https://docs.ultralytics.com/) models trained with [`Roboflow`](https://roboflow.com/). Detections are then georeferenced with [`PINGMapper`](https://github.com/CameronBodine/PINGMapper).

## Installation

### GPU (Fast Inference)

`GhostVision` is optimized for running inference (predictions) on the GPU. The processing environment is installed with `conda`. Any flavor of `conda` will do, but we recommend [`Miniforge`](https://conda-forge.org/download/). Follow the instructions below based on your OS.

#### Windows Only
Windows does not natively support inference on the GPU. A utility called [WSL](https://learn.microsoft.com/en-us/windows/wsl/install) (Windows Subsystem for Linux) needs to be installed in order to run inference on the GPU.

1. Install [WSL](https://learn.microsoft.com/en-us/windows/wsl/install) (Windows Subsystem for Linux) & 
2. Open the command prompt by launching `Ubuntu` from the Windows Start menu.

#### Install `Miniforge`

3. In a command prompt, download [`Miniforge`](https://conda-forge.org/download/) with:
    ```
    wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
    ```
4. Install [`Miniforge`](https://conda-forge.org/download/) with:
    ```
    bash Miniforge3-$(uname)-$(uname -m).sh
    ```

#### Install `GhostVision`

5. Install `PINGInstaller`:
    ```
    pip install pinginstaller
    ```
6. Install `GhostVision`:
    ```
    python -m pinginstaller ghostvision-gpu
    ```

### CPU (Slow Inference; Experimental)
An experimental version of `GhostVision` is available to test inference speeds on the CPU. This has been tested on Windows 11 only.

1. Install [`Miniforge`](https://conda-forge.org/download/).
2. Open the [`Miniforge`](https://conda-forge.org/download/) prompt.
3. Install `PINGInstaller`:
    ```
    pip install pinginstaller
    ```
4. Install `GhostVision`.
    ```
    python -m pinginstaller ghostvision
    ```

## Usage

1. Open the appropriate command prompt based on your installation above.
2. Launch `GhostVision`:
    ```
    conda activate ghostvision
    python -m ghostvision
    ```
3. Select desired parameters and click `Submit`.

## Download Custom `Roboflow` Object Detection Model

`GhostVision` includes `Roboflow` object detection models designed to detect crab pots from side-scan sonar imagery. You can train and use your own object detection model by downloading the model from `Roboflow` with the included utility.

1. Open the appropriate command prompt based on your installation above.
2. Launch the Roboflow model download utility:
    ```
    conda activate ghostvision
    python -m ghostvision rf-download
    ```
3. Supply your [Roboflow API Key](https://docs.roboflow.com/developer/authentication/find-your-roboflow-api-key).
4. Enter the project name (all lowercase).
5. Enter the project version.

The model will be downloaded and available to use.

## Acknowledgments

**Development Team:** [Cameron Bodine](https://github.com/CameronBodine), [Art Trembanis](https://www.udel.edu/academics/colleges/ceoe/departments/smsp/faculty/arthur-trembanis/), Kleio Baxevani, Onur Bagoren, Olivia Hines, Jared Wierzbicki, Ophelia Christoph, Catherine Hughes, Julia Greco.



            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ghostvision",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "pingmapper, sonar, ecology, remotesensing, sidescan, sidescan-sonar, aquatic, humminbird, lowrance, gis, oceanography, limnology, object-detection",
    "author": "Cameron Bodine",
    "author_email": "bodine.cs@gmail.email",
    "download_url": "https://files.pythonhosted.org/packages/9a/d0/1881964e067fff40420d8316e5782d1e8fe19a288e20d6df5520b8989567/ghostvision-1.0.0b1.tar.gz",
    "platform": null,
    "description": "# GhostVision\r\n\r\n# \u00f0\u0178\u0161\u00a7**UNDER CONSTRUCTION**\u00f0\u0178\u0161\u00a7\r\n\r\n[![PyPI - Version](https://img.shields.io/pypi/v/ghostvision?style=flat-square&label=Latest%20Version%20(PyPi))](https://pypi.org/project/ghostvision/)\r\n[![GitHub last commit](https://img.shields.io/github/last-commit/PINGEcosystem/GhostVision)](https://github.com/PINGEcosystem/GhostVision/commits)\r\n[![GitHub commit activity](https://img.shields.io/github/commit-activity/m/PINGEcosystem/GhostVision)](https://github.com/PINGEcosystem/GhostVision/commits)\r\n[![GitHub](https://img.shields.io/github/license/PINGEcosystem/GhostVision)](https://github.com/PINGEcosystem/GhostVision/blob/main/LICENSE)\r\n\r\nNear-real time detection of derelict (ghost) crab pots with side-scan sonar.\r\n\r\n![ezgif com-crop](https://github.com/user-attachments/assets/ece0602b-1edf-4a2a-88ec-9301b2483378)\r\n\r\n## Overview\r\n\r\n`GhostVision` is an open-source Python interface for automatically detecting and mapping ghost (derelict) crab pots from side-scan sonar imagery. `GhostVision` leverages [`Yolo`](https://docs.ultralytics.com/) models trained with [`Roboflow`](https://roboflow.com/). Detections are then georeferenced with [`PINGMapper`](https://github.com/CameronBodine/PINGMapper).\r\n\r\n## Installation\r\n\r\n### GPU (Fast Inference)\r\n\r\n`GhostVision` is optimized for running inference (predictions) on the GPU. The processing environment is installed with `conda`. Any flavor of `conda` will do, but we recommend [`Miniforge`](https://conda-forge.org/download/). Follow the instructions below based on your OS.\r\n\r\n#### Windows Only\r\nWindows does not natively support inference on the GPU. A utility called [WSL](https://learn.microsoft.com/en-us/windows/wsl/install) (Windows Subsystem for Linux) needs to be installed in order to run inference on the GPU.\r\n\r\n1. Install [WSL](https://learn.microsoft.com/en-us/windows/wsl/install) (Windows Subsystem for Linux) & \r\n2. Open the command prompt by launching `Ubuntu` from the Windows Start menu.\r\n\r\n#### Install `Miniforge`\r\n\r\n3. In a command prompt, download [`Miniforge`](https://conda-forge.org/download/) with:\r\n    ```\r\n    wget \"https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh\"\r\n    ```\r\n4. Install [`Miniforge`](https://conda-forge.org/download/) with:\r\n    ```\r\n    bash Miniforge3-$(uname)-$(uname -m).sh\r\n    ```\r\n\r\n#### Install `GhostVision`\r\n\r\n5. Install `PINGInstaller`:\r\n    ```\r\n    pip install pinginstaller\r\n    ```\r\n6. Install `GhostVision`:\r\n    ```\r\n    python -m pinginstaller ghostvision-gpu\r\n    ```\r\n\r\n### CPU (Slow Inference; Experimental)\r\nAn experimental version of `GhostVision` is available to test inference speeds on the CPU. This has been tested on Windows 11 only.\r\n\r\n1. Install [`Miniforge`](https://conda-forge.org/download/).\r\n2. Open the [`Miniforge`](https://conda-forge.org/download/) prompt.\r\n3. Install `PINGInstaller`:\r\n    ```\r\n    pip install pinginstaller\r\n    ```\r\n4. Install `GhostVision`.\r\n    ```\r\n    python -m pinginstaller ghostvision\r\n    ```\r\n\r\n## Usage\r\n\r\n1. Open the appropriate command prompt based on your installation above.\r\n2. Launch `GhostVision`:\r\n    ```\r\n    conda activate ghostvision\r\n    python -m ghostvision\r\n    ```\r\n3. Select desired parameters and click `Submit`.\r\n\r\n## Download Custom `Roboflow` Object Detection Model\r\n\r\n`GhostVision` includes `Roboflow` object detection models designed to detect crab pots from side-scan sonar imagery. You can train and use your own object detection model by downloading the model from `Roboflow` with the included utility.\r\n\r\n1. Open the appropriate command prompt based on your installation above.\r\n2. Launch the Roboflow model download utility:\r\n    ```\r\n    conda activate ghostvision\r\n    python -m ghostvision rf-download\r\n    ```\r\n3. Supply your [Roboflow API Key](https://docs.roboflow.com/developer/authentication/find-your-roboflow-api-key).\r\n4. Enter the project name (all lowercase).\r\n5. Enter the project version.\r\n\r\nThe model will be downloaded and available to use.\r\n\r\n## Acknowledgments\r\n\r\n**Development Team:** [Cameron Bodine](https://github.com/CameronBodine), [Art Trembanis](https://www.udel.edu/academics/colleges/ceoe/departments/smsp/faculty/arthur-trembanis/), Kleio Baxevani, Onur Bagoren, Olivia Hines, Jared Wierzbicki, Ophelia Christoph, Catherine Hughes, Julia Greco.\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Near-real time detection of derelict (ghost) crab pots with side-scan sonar.",
    "version": "1.0.0b1",
    "project_urls": {
        "GitHub": "https://github.com/PINGEcosystem/GhostVision",
        "Issues": "https://github.com/PINGEcosystem/GhostVision/issues"
    },
    "split_keywords": [
        "pingmapper",
        " sonar",
        " ecology",
        " remotesensing",
        " sidescan",
        " sidescan-sonar",
        " aquatic",
        " humminbird",
        " lowrance",
        " gis",
        " oceanography",
        " limnology",
        " object-detection"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6a8971ce1809bacea686baeab8753990398c272caef39a9c88411bf7f2838d7f",
                "md5": "273e4dfeab71d8e18189e44b9a179944",
                "sha256": "e9a461ecb3eb3a93fe920d61be23c465b44ec9da95889cf31528a2ecc8ce02ee"
            },
            "downloads": -1,
            "filename": "ghostvision-1.0.0b1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "273e4dfeab71d8e18189e44b9a179944",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 15914,
            "upload_time": "2025-10-08T12:47:03",
            "upload_time_iso_8601": "2025-10-08T12:47:03.596324Z",
            "url": "https://files.pythonhosted.org/packages/6a/89/71ce1809bacea686baeab8753990398c272caef39a9c88411bf7f2838d7f/ghostvision-1.0.0b1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9ad01881964e067fff40420d8316e5782d1e8fe19a288e20d6df5520b8989567",
                "md5": "952ae62d93e8719d7c2b2836cf870cd4",
                "sha256": "391f89df50c2dff7c22fe03ddc3da0a6cc054f834c89c2c99aad09cf8f880c37"
            },
            "downloads": -1,
            "filename": "ghostvision-1.0.0b1.tar.gz",
            "has_sig": false,
            "md5_digest": "952ae62d93e8719d7c2b2836cf870cd4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 16573,
            "upload_time": "2025-10-08T12:47:05",
            "upload_time_iso_8601": "2025-10-08T12:47:05.145065Z",
            "url": "https://files.pythonhosted.org/packages/9a/d0/1881964e067fff40420d8316e5782d1e8fe19a288e20d6df5520b8989567/ghostvision-1.0.0b1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-08 12:47:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PINGEcosystem",
    "github_project": "GhostVision",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ghostvision"
}
        
Elapsed time: 8.67765s