gify-plot


Namegify-plot JSON
Version 0.0.10 PyPI version JSON
download
home_pagehttps://github.com/FrancescoDiCursi/gify_plot
SummaryA basic package to turn plots into gifs.
upload_time2023-09-29 03:11:05
maintainer
docs_urlNone
authorFrancesco Di Cursi
requires_python
licenseMIT
keywords gif plot seaborn matplotlib plotly
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # gify_plot
A simple Python package to turn your plots into gifs (Matplotlib, Seabron, Plotly).

# How to install it
`pip install gify_plot`

# Args
  ### Mandatory
  - **original_df**:pd.DataFrame ==> a dataset containing at least three columns:
    - xaxis_title (i.e., a list of int or flots; dates will be added in future, use only year for now; a range >= 20 years is suggested)
    - yaxis_title (i.e., a list of int or flots )
    - category (i.e., categorical variables, n groups <=7 suggested)
  - **plot_type**:str ==> The plot_type changes according to plot_library
  - **plot_library**:str ==> plt | sns | px  (short forms for matplotlib.pyplot, seaborn and plotly.express)
  - **name**:str ==> The name of pngs and gif given as output,
  - **plot_title**:str 
  - **xaxis_title**:str ==> The name of the column with x values
  - **yaxis_title**:str ==> The name of the column with y values
  ### Optional
  - **colors** = ["blue","red","green","orange","violet","yellow","black","brown","cyan"] ==> it must have at least the same length of groups provided in the data
  - **duration** = 100 ==> The delay in skipping to the next frame in ms
  - **loop** = 0
  - **save_frames** = True ==> If False, delete all png files that have been used to create the gif

# How to use it
```
# WARNING:

# Using more than 5/7 categories ends with a cluttered result.
# The fewer, the better.

# The following csv can be freely downlaoded at https://www.kaggle.com/datasets/sazidthe1/world-gdp-data?select=gdp_data.csv

df=pd.read_csv("gdp_data.csv")
temp_df=df[(df["country_name"].isin(["Italy","Spain"]))]
gify_plot(temp_df,
           plot_type="line", plot_library="plt", name="test_gif",
           plot_title="GDP per country", xaxis_title="year", yaxis_title="value", category="country_code",
           save_frames=False
          )
```

**OUTPUT**: It ouputs a list of png in the dedicated folder, along with the resulting gif.

# Supported libraries and plots:
- **plt** (i.e., matplotlib.pyplot):
  - line
  - bar
  - scatter
  - stackplot (no legend)
- **sns** (i.e., seaborn):
  - lineplot
  - scatterplot
  - barplot
- **px** (i.e., plotly.express):
  - line
  - scatter
  - area
  - bar



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/FrancescoDiCursi/gify_plot",
    "name": "gify-plot",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "gif,plot,seaborn,matplotlib,plotly",
    "author": "Francesco Di Cursi",
    "author_email": "f.dicursi@studenti.unipi.it",
    "download_url": "https://files.pythonhosted.org/packages/68/b5/645fd1f79d752a530e794a528cefd28852b539c66fd325d29d0dc5cc3455/gify_plot-0.0.10.tar.gz",
    "platform": null,
    "description": "# gify_plot\r\nA simple Python package to turn your plots into gifs (Matplotlib, Seabron, Plotly).\r\n\r\n# How to install it\r\n`pip install gify_plot`\r\n\r\n# Args\r\n  ### Mandatory\r\n  - **original_df**:pd.DataFrame ==> a dataset containing at least three columns:\r\n    - xaxis_title (i.e., a list of int or flots; dates will be added in future, use only year for now; a range >= 20 years is suggested)\r\n    - yaxis_title (i.e., a list of int or flots )\r\n    - category (i.e., categorical variables, n groups <=7 suggested)\r\n  - **plot_type**:str ==> The plot_type changes according to plot_library\r\n  - **plot_library**:str ==> plt | sns | px  (short forms for matplotlib.pyplot, seaborn and plotly.express)\r\n  - **name**:str ==> The name of pngs and gif given as output,\r\n  - **plot_title**:str \r\n  - **xaxis_title**:str ==> The name of the column with x values\r\n  - **yaxis_title**:str ==> The name of the column with y values\r\n  ### Optional\r\n  - **colors** = [\"blue\",\"red\",\"green\",\"orange\",\"violet\",\"yellow\",\"black\",\"brown\",\"cyan\"] ==> it must have at least the same length of groups provided in the data\r\n  - **duration** = 100 ==> The delay in skipping to the next frame in ms\r\n  - **loop** = 0\r\n  - **save_frames** = True ==> If False, delete all png files that have been used to create the gif\r\n\r\n# How to use it\r\n```\r\n# WARNING:\r\n\r\n# Using more than 5/7 categories ends with a cluttered result.\r\n# The fewer, the better.\r\n\r\n# The following csv can be freely downlaoded at https://www.kaggle.com/datasets/sazidthe1/world-gdp-data?select=gdp_data.csv\r\n\r\ndf=pd.read_csv(\"gdp_data.csv\")\r\ntemp_df=df[(df[\"country_name\"].isin([\"Italy\",\"Spain\"]))]\r\ngify_plot(temp_df,\r\n           plot_type=\"line\", plot_library=\"plt\", name=\"test_gif\",\r\n           plot_title=\"GDP per country\", xaxis_title=\"year\", yaxis_title=\"value\", category=\"country_code\",\r\n           save_frames=False\r\n          )\r\n```\r\n\r\n**OUTPUT**: It ouputs a list of png in the dedicated folder, along with the resulting gif.\r\n\r\n# Supported libraries and plots:\r\n- **plt** (i.e., matplotlib.pyplot):\r\n  - line\r\n  - bar\r\n  - scatter\r\n  - stackplot (no legend)\r\n- **sns** (i.e., seaborn):\r\n  - lineplot\r\n  - scatterplot\r\n  - barplot\r\n- **px** (i.e., plotly.express):\r\n  - line\r\n  - scatter\r\n  - area\r\n  - bar\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A basic package to turn plots into gifs.",
    "version": "0.0.10",
    "project_urls": {
        "Homepage": "https://github.com/FrancescoDiCursi/gify_plot"
    },
    "split_keywords": [
        "gif",
        "plot",
        "seaborn",
        "matplotlib",
        "plotly"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6908c29a27e8b23f34f43fc6c5d5744d2135dda348503a4b47f18f7aa4da9657",
                "md5": "a25060a5f53c8f7ae475ecb0cabd7c0f",
                "sha256": "b789dae3aeca4ca43a5b8cf91d49f055ec7e01c711baab16cf9c1089932a2ac2"
            },
            "downloads": -1,
            "filename": "gify_plot-0.0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a25060a5f53c8f7ae475ecb0cabd7c0f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6422,
            "upload_time": "2023-09-29T03:11:03",
            "upload_time_iso_8601": "2023-09-29T03:11:03.606987Z",
            "url": "https://files.pythonhosted.org/packages/69/08/c29a27e8b23f34f43fc6c5d5744d2135dda348503a4b47f18f7aa4da9657/gify_plot-0.0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "68b5645fd1f79d752a530e794a528cefd28852b539c66fd325d29d0dc5cc3455",
                "md5": "86f2b6834271456528915be6a9b13e02",
                "sha256": "d80fdd73b930fdf12169eb0ef1be5841d351b2d53776d5bd84a5c4562a64cd00"
            },
            "downloads": -1,
            "filename": "gify_plot-0.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "86f2b6834271456528915be6a9b13e02",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4193,
            "upload_time": "2023-09-29T03:11:05",
            "upload_time_iso_8601": "2023-09-29T03:11:05.295588Z",
            "url": "https://files.pythonhosted.org/packages/68/b5/645fd1f79d752a530e794a528cefd28852b539c66fd325d29d0dc5cc3455/gify_plot-0.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-29 03:11:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "FrancescoDiCursi",
    "github_project": "gify_plot",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "gify-plot"
}
        
Elapsed time: 0.17616s