[![gimie](docs/logo.svg)](https://github.com/sdsc-ordes/gimie)
[![PyPI version](https://badge.fury.io/py/gimie.svg)](https://badge.fury.io/py/gimie) [![Python Poetry Test](https://github.com/sdsc-ordes/gimie/actions/workflows/poetry-pytest.yml/badge.svg)](https://github.com/sdsc-ordes/gimie/actions/workflows/poetry-pytest.yml) [![docs](https://github.com/sdsc-ordes/gimie/actions/workflows/sphinx-docs.yml/badge.svg)](https://sdsc-ordes.github.io/gimie) [![Coverage Status](https://coveralls.io/repos/github/sdsc-ordes/gimie/badge.svg?branch=main)](https://coveralls.io/github/sdsc-ordes/gimie?branch=main)
Gimie (GIt Meta Information Extractor) is a python library and command line tool to extract structured metadata from git repositories.
## Context
Scientific code repositories contain valuable metadata which can be used to enrich existing catalogues, platforms or databases. This tool aims to easily extract structured metadata from a generic git repositories. It can extract extract metadata from the Git provider (GitHub or GitLab) or from the git index itself.
----------------------------------------------------------------------
Using Gimie: easy peasy, it's a 3 step process.
## 1: Installation
To install the stable version on PyPI:
```shell
pip install gimie
```
To install the dev version from github:
```shell
pip install git+https://github.com/sdsc-ordes/gimie.git@main#egg=gimie
```
Gimie is also available as a docker container hosted on the [Github container registry](https://github.com/sdsc-ordes/gimie/pkgs/container/gimie):
```shell
docker pull ghcr.io/sdsc-ordes/gimie:latest
# The access token can be provided as an environment variable
docker run -e GITHUB_TOKEN=$GITHUB_TOKEN ghcr.io/sdsc-ordes/gimie:latest gimie data <repo>
```
## 2 : Set your credentials
In order to access the github api, you need to provide a github token with the `read:org` scope.
### A. Create access tokens
New to access tokens? Or don't know how to get your Github / Gitlab token ?
Have no fear, see
[here for Github tokens](https://docs.github.com/en/enterprise-server@3.4/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token) and [here for Gitlab tokens](https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html).
(Note: tokens are as precious as passwords! Treat them as such.)
### B. Set your access tokens via the Terminal
Gimie will use your access tokens to gather information for you. If you want info about a Github repo, Gimie needs your Github token; if you want info about a Gitlab Project then Gimie needs your Gitlab token.
Add your tokens one by one in your terminal:
your Github token:
```bash
export GITHUB_TOKEN=
```
and/or your Gitlab token:
```bash
export GITLAB_TOKEN=
```
## 3: GIMIE info ! Run Gimie
### As a command line tool
```shell
gimie data https://github.com/numpy/numpy
```
(want a Gitlab project instead? Just replace the URL in the command line)
### As a python library
```python
from gimie.project import Project
proj = Project("https://github.com/numpy/numpy")
# To retrieve the rdflib.Graph object
g = proj.extract()
# To retrieve the serialized graph
g_in_ttl = g.serialize(format='ttl')
print(g_in_ttl)
```
For more advanced use see [the documentation](https://sdsc-ordes.github.io/gimie/intro/usage_python.html).
## Outputs
The default output is [Turtle](https://www.w3.org/TR/turtle/), a textual syntax for [RDF](https://en.wikipedia.org/wiki/Resource_Description_Framework) data model. We follow the schema recommended by [codemeta](https://codemeta.github.io/).
Supported formats are turtle, json-ld and n-triples (by specifying the `--format` argument in your call i.e. `gimie data https://github.com/numpy/numpy --format 'ttl'`).
With no specifications, Gimie will print results in the terminal. Want to save Gimie output to a file? Add your file path to the end : `gimie data https://github.com/numpy/numpy > path_to_output/gimie_output.ttl`
----------------------------------------------------------------------
## Contributing
All contributions are welcome. New functions and classes should have associated tests and docstrings following the [numpy style guide](https://numpydoc.readthedocs.io/en/latest/format.html).
The code formatting standard we use is [black](https://github.com/psf/black), with `--line-length=79` to follow [PEP8](https://peps.python.org/pep-0008/) recommendations. We use [pytest](https://docs.pytest.org/en/7.2.x/) as our testing framework. This project uses [pyproject.toml](https://pip.pypa.io/en/stable/reference/build-system/pyproject-toml/) to define package information, requirements and tooling configuration.
### For development:
activate a conda or virtual environment with Python 3.8 or higher
```shell
git clone https://github.com/sdsc-ordes/gimie && cd gimie
make install
```
run tests:
```shell
make test
```
run checks:
```shell
make check
```
for an easier use Github/Gitlab APIs, place your access tokens in the `.env` file: (and don't worry, the `.gitignore` will ignore them when you push to GitHub)
```
cp .env.dist .env
```
build documentation:
```shell
make doc
```
## Releases and Publishing on Pypi
Releases are done via github release
- a release will trigger a github workflow to publish the package on Pypi
- Make sure to update to a new version in `pyproject.toml` and `conf.py` before making the release
- It is possible to test the publishing on Pypi.test by running a manual workflow: go to github actions and run the Workflow: 'Publish on Pypi Test'
Raw data
{
"_id": null,
"home_page": "https://github.com/sdsc-ordes/gimie",
"name": "gimie",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "metadata, git, extraction, linked-data",
"author": "Swiss Data Science Center",
"author_email": "contact@datascience.ch",
"download_url": "https://files.pythonhosted.org/packages/da/82/64e6dccee6a8c3772d382a7fc3cf04fcb76358eaafd86d163e56fcd26f62/gimie-0.7.2.tar.gz",
"platform": null,
"description": "[![gimie](docs/logo.svg)](https://github.com/sdsc-ordes/gimie)\n\n[![PyPI version](https://badge.fury.io/py/gimie.svg)](https://badge.fury.io/py/gimie) [![Python Poetry Test](https://github.com/sdsc-ordes/gimie/actions/workflows/poetry-pytest.yml/badge.svg)](https://github.com/sdsc-ordes/gimie/actions/workflows/poetry-pytest.yml) [![docs](https://github.com/sdsc-ordes/gimie/actions/workflows/sphinx-docs.yml/badge.svg)](https://sdsc-ordes.github.io/gimie) [![Coverage Status](https://coveralls.io/repos/github/sdsc-ordes/gimie/badge.svg?branch=main)](https://coveralls.io/github/sdsc-ordes/gimie?branch=main)\n\nGimie (GIt Meta Information Extractor) is a python library and command line tool to extract structured metadata from git repositories.\n\n\n## Context\nScientific code repositories contain valuable metadata which can be used to enrich existing catalogues, platforms or databases. This tool aims to easily extract structured metadata from a generic git repositories. It can extract extract metadata from the Git provider (GitHub or GitLab) or from the git index itself.\n\n----------------------------------------------------------------------\n\nUsing Gimie: easy peasy, it's a 3 step process.\n\n## 1: Installation\n\nTo install the stable version on PyPI:\n\n```shell\npip install gimie\n```\n\nTo install the dev version from github:\n\n```shell\npip install git+https://github.com/sdsc-ordes/gimie.git@main#egg=gimie\n```\n\nGimie is also available as a docker container hosted on the [Github container registry](https://github.com/sdsc-ordes/gimie/pkgs/container/gimie):\n\n```shell\ndocker pull ghcr.io/sdsc-ordes/gimie:latest\n\n# The access token can be provided as an environment variable\ndocker run -e GITHUB_TOKEN=$GITHUB_TOKEN ghcr.io/sdsc-ordes/gimie:latest gimie data <repo>\n```\n\n## 2 : Set your credentials\n\nIn order to access the github api, you need to provide a github token with the `read:org` scope.\n\n### A. Create access tokens\n\nNew to access tokens? Or don't know how to get your Github / Gitlab token ?\n\nHave no fear, see\n[here for Github tokens](https://docs.github.com/en/enterprise-server@3.4/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token) and [here for Gitlab tokens](https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html).\n(Note: tokens are as precious as passwords! Treat them as such.)\n\n### B. Set your access tokens via the Terminal\n\nGimie will use your access tokens to gather information for you. If you want info about a Github repo, Gimie needs your Github token; if you want info about a Gitlab Project then Gimie needs your Gitlab token.\n\nAdd your tokens one by one in your terminal:\nyour Github token:\n```bash\nexport GITHUB_TOKEN=\n```\nand/or your Gitlab token:\n```bash\nexport GITLAB_TOKEN=\n```\n\n## 3: GIMIE info ! Run Gimie\n\n### As a command line tool\n\n```shell\ngimie data https://github.com/numpy/numpy\n```\n(want a Gitlab project instead? Just replace the URL in the command line)\n\n### As a python library\n\n```python\nfrom gimie.project import Project\nproj = Project(\"https://github.com/numpy/numpy\")\n\n# To retrieve the rdflib.Graph object\ng = proj.extract()\n\n# To retrieve the serialized graph\ng_in_ttl = g.serialize(format='ttl')\nprint(g_in_ttl)\n```\nFor more advanced use see [the documentation](https://sdsc-ordes.github.io/gimie/intro/usage_python.html).\n## Outputs\n\nThe default output is [Turtle](https://www.w3.org/TR/turtle/), a textual syntax for [RDF](https://en.wikipedia.org/wiki/Resource_Description_Framework) data model. We follow the schema recommended by [codemeta](https://codemeta.github.io/).\nSupported formats are turtle, json-ld and n-triples (by specifying the `--format` argument in your call i.e. `gimie data https://github.com/numpy/numpy --format 'ttl'`).\n\nWith no specifications, Gimie will print results in the terminal. Want to save Gimie output to a file? Add your file path to the end : `gimie data https://github.com/numpy/numpy > path_to_output/gimie_output.ttl`\n\n----------------------------------------------------------------------\n\n## Contributing\n\nAll contributions are welcome. New functions and classes should have associated tests and docstrings following the [numpy style guide](https://numpydoc.readthedocs.io/en/latest/format.html).\n\nThe code formatting standard we use is [black](https://github.com/psf/black), with `--line-length=79` to follow [PEP8](https://peps.python.org/pep-0008/) recommendations. We use [pytest](https://docs.pytest.org/en/7.2.x/) as our testing framework. This project uses [pyproject.toml](https://pip.pypa.io/en/stable/reference/build-system/pyproject-toml/) to define package information, requirements and tooling configuration.\n\n### For development:\n\nactivate a conda or virtual environment with Python 3.8 or higher\n\n```shell\ngit clone https://github.com/sdsc-ordes/gimie && cd gimie\nmake install\n```\n\nrun tests:\n\n```shell\nmake test\n```\n\nrun checks:\n\n```shell\nmake check\n```\nfor an easier use Github/Gitlab APIs, place your access tokens in the `.env` file: (and don't worry, the `.gitignore` will ignore them when you push to GitHub)\n\n```\ncp .env.dist .env\n```\n\nbuild documentation:\n\n```shell\nmake doc\n```\n\n## Releases and Publishing on Pypi\n\nReleases are done via github release\n\n- a release will trigger a github workflow to publish the package on Pypi\n- Make sure to update to a new version in `pyproject.toml` and `conf.py` before making the release\n- It is possible to test the publishing on Pypi.test by running a manual workflow: go to github actions and run the Workflow: 'Publish on Pypi Test'\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Extract structured metadata from git repositories.",
"version": "0.7.2",
"project_urls": {
"Homepage": "https://github.com/sdsc-ordes/gimie"
},
"split_keywords": [
"metadata",
" git",
" extraction",
" linked-data"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ea96f3cb8d114d1d1f3c97e762daed5f2851c8048e221da80949986c7047ba86",
"md5": "887e3684d8903b326d4b123a1f989f0b",
"sha256": "7da9185adebe27b7deee88a6617ae59b2f3b3e7ccf5058900be28a0047e4efe5"
},
"downloads": -1,
"filename": "gimie-0.7.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "887e3684d8903b326d4b123a1f989f0b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 107177,
"upload_time": "2024-12-18T09:05:42",
"upload_time_iso_8601": "2024-12-18T09:05:42.993892Z",
"url": "https://files.pythonhosted.org/packages/ea/96/f3cb8d114d1d1f3c97e762daed5f2851c8048e221da80949986c7047ba86/gimie-0.7.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "da8264e6dccee6a8c3772d382a7fc3cf04fcb76358eaafd86d163e56fcd26f62",
"md5": "f74c58cca365efee917f9399f8722939",
"sha256": "a0f697e0643540785e62261c2afa2fa5c4ed3a8eef6583ccded9f691d122dddd"
},
"downloads": -1,
"filename": "gimie-0.7.2.tar.gz",
"has_sig": false,
"md5_digest": "f74c58cca365efee917f9399f8722939",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 96775,
"upload_time": "2024-12-18T09:05:46",
"upload_time_iso_8601": "2024-12-18T09:05:46.165148Z",
"url": "https://files.pythonhosted.org/packages/da/82/64e6dccee6a8c3772d382a7fc3cf04fcb76358eaafd86d163e56fcd26f62/gimie-0.7.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-18 09:05:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "sdsc-ordes",
"github_project": "gimie",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "gimie"
}