Name | girg-sampling JSON |
Version |
0.3.0
JSON |
| download |
home_page | https://github.com/gavento/girg-sampling |
Summary | Efficient sampling of Geometric Inhomogeneous Random Graphs (GIRG). Wrapper for C++ libraries libgirg and libhypergirg. |
upload_time | 2023-10-17 23:48:51 |
maintainer | |
docs_url | None |
author | Tomas Gavenciak |
requires_python | >=3.8,<4 |
license | |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# GIRG sampling
A Python wrapper for the [GIRGs sampling library](https://github.com/chistopher/girgs) (C++).
Contains a direct wraper of the C++ library and NetworkX Graph generators (optional).
Efficiently generates Geometric Inhomogeneous Random Graphs (GIRGs) and Hyperbolic Random Graphs (HRGs).
See the paper [Efficiently Generating Geometric Inhomogeneous and Hyperbolic Random Graphs](https://arxiv.org/abs/1905.06706)
for details of the algorithm.
## Install
Install from PyPI as `girg-sampling` via `pip`, `poetry` etc.
To build the package locally, install Poetry package manager and run `poetry build`, optionally with `poetry install`.
To use `generateNetworkX` functions, you need to have the `networkx` package (not a default dependency of `girg-sampling`)
## Usage
```python
import girg_sampling
g = girg_sampling.girgs.generateNetworkX(n=135, ple=1.5, dim=4, deg=4.2, alpha=100, seed=41)
h = girg_sampling.hypergirgs.generateNetworkX(n=1001, alpha=0.75, T=0.7, deg=2.2, seed=None)
```
See [tests](https://github.com/gavento/girg-sampling/blob/master/tests/test_basic.py) for sample usage of the raw C++ wrappers.
## Changelog
* 0.1.0: A direct wrapper of the C++ graph generator functions.
* 0.2.0: Minor fixes, unify `seed` param, add e2e tests, build wheels for python up to 3.10
* 0.2.1: Update urllib3 dev-dependency for twine under Python 3.10
* 0.3.0: Add NetworkX wrapper, update python version, add docs.
Raw data
{
"_id": null,
"home_page": "https://github.com/gavento/girg-sampling",
"name": "girg-sampling",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8,<4",
"maintainer_email": "",
"keywords": "",
"author": "Tomas Gavenciak",
"author_email": "gavento@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/eb/01/358db3c4c58f693d79822faadde0cf5dade26d50e9e824f8f1f0e331bb41/girg_sampling-0.3.0.tar.gz",
"platform": null,
"description": "# GIRG sampling\n\nA Python wrapper for the [GIRGs sampling library](https://github.com/chistopher/girgs) (C++).\nContains a direct wraper of the C++ library and NetworkX Graph generators (optional).\nEfficiently generates Geometric Inhomogeneous Random Graphs (GIRGs) and Hyperbolic Random Graphs (HRGs).\n\nSee the paper [Efficiently Generating Geometric Inhomogeneous and Hyperbolic Random Graphs](https://arxiv.org/abs/1905.06706)\nfor details of the algorithm.\n\n## Install\n\nInstall from PyPI as `girg-sampling` via `pip`, `poetry` etc.\nTo build the package locally, install Poetry package manager and run `poetry build`, optionally with `poetry install`.\n\nTo use `generateNetworkX` functions, you need to have the `networkx` package (not a default dependency of `girg-sampling`)\n\n## Usage\n\n```python\nimport girg_sampling\n\ng = girg_sampling.girgs.generateNetworkX(n=135, ple=1.5, dim=4, deg=4.2, alpha=100, seed=41)\nh = girg_sampling.hypergirgs.generateNetworkX(n=1001, alpha=0.75, T=0.7, deg=2.2, seed=None)\n```\n\nSee [tests](https://github.com/gavento/girg-sampling/blob/master/tests/test_basic.py) for sample usage of the raw C++ wrappers.\n\n## Changelog\n\n* 0.1.0: A direct wrapper of the C++ graph generator functions.\n* 0.2.0: Minor fixes, unify `seed` param, add e2e tests, build wheels for python up to 3.10\n* 0.2.1: Update urllib3 dev-dependency for twine under Python 3.10\n* 0.3.0: Add NetworkX wrapper, update python version, add docs.\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Efficient sampling of Geometric Inhomogeneous Random Graphs (GIRG). Wrapper for C++ libraries libgirg and libhypergirg.",
"version": "0.3.0",
"project_urls": {
"Homepage": "https://github.com/gavento/girg-sampling",
"Repository": "https://github.com/gavento/girg-sampling"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4ba844e9a9e61dca62a581cc232d1e07e83e80e15422c0efe066dcc68641971d",
"md5": "e16d562f0a1c872f012df792c51f284d",
"sha256": "be3fa03cb87680dd8bd2766522872a3aac316f7f485830661943c3f3186589b8"
},
"downloads": -1,
"filename": "girg_sampling-0.3.0-cp310-cp310-manylinux_2_35_x86_64.whl",
"has_sig": false,
"md5_digest": "e16d562f0a1c872f012df792c51f284d",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8,<4",
"size": 1598830,
"upload_time": "2023-10-17T23:48:53",
"upload_time_iso_8601": "2023-10-17T23:48:53.386352Z",
"url": "https://files.pythonhosted.org/packages/4b/a8/44e9a9e61dca62a581cc232d1e07e83e80e15422c0efe066dcc68641971d/girg_sampling-0.3.0-cp310-cp310-manylinux_2_35_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1f2d636bee893fbb36db9365291b43c702fd6ee1567de97abbe8748b576e1316",
"md5": "f56ecd8f422e29019f9fb4a430b37e9e",
"sha256": "be6fbb293866f8ac16bbb2b550f41aa597dfa9464bf12c49d0e8d78b1152b4cd"
},
"downloads": -1,
"filename": "girg_sampling-0.3.0-cp311-cp311-manylinux_2_35_x86_64.whl",
"has_sig": false,
"md5_digest": "f56ecd8f422e29019f9fb4a430b37e9e",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8,<4",
"size": 1601883,
"upload_time": "2023-10-17T23:48:48",
"upload_time_iso_8601": "2023-10-17T23:48:48.606577Z",
"url": "https://files.pythonhosted.org/packages/1f/2d/636bee893fbb36db9365291b43c702fd6ee1567de97abbe8748b576e1316/girg_sampling-0.3.0-cp311-cp311-manylinux_2_35_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7f21e2aeeefe7ec0a760de34ce7e8ffe01484d5540ffd1fb83f0801c461bf568",
"md5": "da65c56a0c7fd0f9d0a69f0fb85ac6cd",
"sha256": "74d9072e8940e02ef86b3647bcfa37457e40ca6cb13858aab5a9040f703d7176"
},
"downloads": -1,
"filename": "girg_sampling-0.3.0-cp312-cp312-manylinux_2_35_x86_64.whl",
"has_sig": false,
"md5_digest": "da65c56a0c7fd0f9d0a69f0fb85ac6cd",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8,<4",
"size": 1601788,
"upload_time": "2023-10-17T23:49:15",
"upload_time_iso_8601": "2023-10-17T23:49:15.252299Z",
"url": "https://files.pythonhosted.org/packages/7f/21/e2aeeefe7ec0a760de34ce7e8ffe01484d5540ffd1fb83f0801c461bf568/girg_sampling-0.3.0-cp312-cp312-manylinux_2_35_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "37a2d388e4f10519157302c6613b9da869cb3a7d5ea3fc948fe46d8f41a35051",
"md5": "eff53c51b81d9433ea96c76f91730a02",
"sha256": "05dffb03991803fd3af342a884f4ea123df0e7e1e9f54e53698a1221d2336650"
},
"downloads": -1,
"filename": "girg_sampling-0.3.0-cp38-cp38-manylinux_2_35_x86_64.whl",
"has_sig": false,
"md5_digest": "eff53c51b81d9433ea96c76f91730a02",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8,<4",
"size": 1597183,
"upload_time": "2023-10-17T23:48:51",
"upload_time_iso_8601": "2023-10-17T23:48:51.910937Z",
"url": "https://files.pythonhosted.org/packages/37/a2/d388e4f10519157302c6613b9da869cb3a7d5ea3fc948fe46d8f41a35051/girg_sampling-0.3.0-cp38-cp38-manylinux_2_35_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a4701ecde7d35e252bf72604d76a5417dd151401c35d56d52d7076c3c05505d7",
"md5": "9ed3b2a478109a418bbc7a923979d5f6",
"sha256": "2a18ec5279549565db7966e2bc1c4e35e77b81d8c8fe177052b929b02daf02ba"
},
"downloads": -1,
"filename": "girg_sampling-0.3.0-cp39-cp39-manylinux_2_35_x86_64.whl",
"has_sig": false,
"md5_digest": "9ed3b2a478109a418bbc7a923979d5f6",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8,<4",
"size": 1598554,
"upload_time": "2023-10-17T23:49:16",
"upload_time_iso_8601": "2023-10-17T23:49:16.410967Z",
"url": "https://files.pythonhosted.org/packages/a4/70/1ecde7d35e252bf72604d76a5417dd151401c35d56d52d7076c3c05505d7/girg_sampling-0.3.0-cp39-cp39-manylinux_2_35_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "eb01358db3c4c58f693d79822faadde0cf5dade26d50e9e824f8f1f0e331bb41",
"md5": "ba71a7dfd709c8f642382a45f6e8b6ba",
"sha256": "5ff37f0a308d5842f94144da64fcda414556e557c5b0b2ba0fff2b7a80d04f50"
},
"downloads": -1,
"filename": "girg_sampling-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "ba71a7dfd709c8f642382a45f6e8b6ba",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<4",
"size": 27927,
"upload_time": "2023-10-17T23:48:51",
"upload_time_iso_8601": "2023-10-17T23:48:51.622955Z",
"url": "https://files.pythonhosted.org/packages/eb/01/358db3c4c58f693d79822faadde0cf5dade26d50e9e824f8f1f0e331bb41/girg_sampling-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-17 23:48:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "gavento",
"github_project": "girg-sampling",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "girg-sampling"
}