globox


Nameglobox JSON
Version 2.4.7 PyPI version JSON
download
home_pageNone
SummaryGlobox is a package and command line interface to read and convert object detection databases (COCO, YOLO, PascalVOC, LabelMe, CVAT, OpenImage, ...) and evaluate them with COCO and PascalVOC.
upload_time2024-11-20 23:17:12
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords annotation average precision bounding boxes coco cvat mean average precision metrics object detection openimages pascal voc yolo
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Globox — Object Detection Toolbox

This framework can:

* parse all kinds of object detection datasets (ImageNet, COCO, YOLO, PascalVOC, OpenImage, CVAT, LabelMe, etc.) and show statistics,
* convert them to other formats (ImageNet, COCO, YOLO, PascalVOC, OpenImage, CVAT, LabelMe, etc.),
* and evaluate predictions using standard object detection metrics such as $AP_{[.5:.05:.95]}$, $AP_{50}$, $mAP$, $AR_{1}$, $AR_{10}$, $AR_{100}$.

This framework can be used both as a library in your own code and as a command line tool. This tool is designed to be simple to use, fast and correct.

## Install

You can install the package using pip:

```shell
pip install globox
```

## Use as a Library

### Parse Annotations

The library has three main components:

* `BoundingBox`: represents a bounding box with a label and an optional confidence score
* `Annotation`: represent the bounding boxes annotations for one image
* `AnnotationSet`: represents annotations for a set of images (a database)

The `AnnotationSet` class contains static methods to read different dataset formats:

```python
# COCO
coco = AnnotationSet.from_coco(file_path="path/to/file.json")

# YOLOv5
yolo = AnnotationSet.from_yolo_v5(
    folder="path/to/files/",
    image_folder="path/to/images/"
)

# Pascal VOC
pascal = AnnotationSet.from_pascal_voc(folder="path/to/files/")
```

`Annotation` offers file-level granularity for compatible datasets:

```python
annotation = Annotation.from_labelme(file_path="path/to/file.xml")
```

For more specific implementations the `BoundingBox` class contains lots of utilities to parse bounding boxes in different formats, like the `create()` method.

`AnnotationsSets` are set-like objects. They can be combined and annotations can be added:

```python
gts = coco | yolo
gts.add(annotation)
```

### Inspect Datasets

Iterators and efficient lookup by `image_id`'s are easy to use:

```python
if annotation in gts:
    print("This annotation is present.")

if "image_123.jpg" in gts.image_ids:
    print("Annotation of image 'image_123.jpg' is present.")

for box in gts.all_boxes:
    print(box.label, box.area, box.is_ground_truth)

for annotation in gts:
    nb_boxes = len(annotation.boxes)
    print(f"{annotation.image_id}: {nb_boxes} boxes")
```

Datasets stats can printed to the console:

```python
coco_gts.show_stats()
```

```text
         Database Stats         
┏━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Label       ┃ Images ┃ Boxes ┃
┡━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ aeroplane   │     10 │    15 │
│ bicycle     │      7 │    14 │
│ bird        │      4 │     6 │
│ boat        │      7 │    11 │
│ bottle      │      9 │    13 │
│ bus         │      5 │     6 │
│ car         │      6 │    14 │
│ cat         │      4 │     5 │
│ chair       │      9 │    15 │
│ cow         │      6 │    14 │
│ diningtable │      7 │     7 │
│ dog         │      6 │     8 │
│ horse       │      7 │     7 │
│ motorbike   │      3 │     5 │
│ person      │     41 │    91 │
│ pottedplant │      6 │     7 │
│ sheep       │      4 │    10 │
│ sofa        │     10 │    10 │
│ train       │      5 │     6 │
│ tvmonitor   │      8 │     9 │
├─────────────┼────────┼───────┤
│ Total       │    100 │   273 │
└─────────────┴────────┴───────┘
```

### Convert and Save to Many Formats

Datasets can be converted to and saved in other formats:

```python
# ImageNet
gts.save_imagenet(save_dir="pascalVOC_db/")

# YOLO Darknet
gts.save_yolo_darknet(
    save_dir="yolo_train/", 
    label_to_id={"cat": 0, "dog": 1, "racoon": 2}
)

# YOLOv5
gts.save_yolo_v5(
    save_dir="yolo_train/", 
    label_to_id={"cat": 0, "dog": 1, "racoon": 2},
)

# CVAT
gts.save_cvat(path="train.xml")
```

### COCO Evaluation

COCO Evaluation is also supported:

```python
evaluator = COCOEvaluator(
    ground_truths=gts, 
    predictions=dets
)

ap = evaluator.ap()
ar_100 = evaluator.ar_100()
ap_75 = evaluator.ap_75()
ap_small = evaluator.ap_small()
...
```

All COCO standard metrics can be displayed in a pretty printed table with:

```python
evaluator.show_summary()
```

which outputs:

```text
                              COCO Evaluation
┏━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━┳...┳━━━━━━━━┳━━━━━━━━┳━━━━━━━━┓
┃ Label     ┃ AP 50:95 ┃  AP 50 ┃   ┃   AR S ┃   AR M ┃   AR L ┃
┡━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━╇...╇━━━━━━━━╇━━━━━━━━╇━━━━━━━━┩
│ airplane  │    22.7% │  25.2% │   │   nan% │  90.0% │   0.0% │
│ apple     │    46.4% │  57.4% │   │  48.5% │   nan% │   nan% │
│ backpack  │    54.8% │  85.1% │   │ 100.0% │  72.0% │   0.0% │
│ banana    │    73.6% │  96.4% │   │   nan% │ 100.0% │  70.0% │
.           .          .        .   .        .        .        .
.           .          .        .   .        .        .        .
.           .          .        .   .        .        .        .
├───────────┼──────────┼────────┼...┼────────┼────────┼────────┤
│ Total     │    50.3% │  69.7% │   │  65.4% │  60.3% │  55.3% │
└───────────┴──────────┴────────┴...┴────────┴────────┴────────┘
```

The array of results can be saved in CSV format:

```python
evaluator.save_csv("where/to/save/results.csv")
```

Custom evaluations can be achieved with:

```python
evaluation = evaluator.evaluate(
    iou_threshold=0.33,
    max_detections=1_000,
    size_range=(0.0, 10_000)
)

ap = evaluation.ap()
cat_ar = evaluation["cat"].ar
```

Evaluations are cached by `(iou_threshold, max_detections, size_range)` keys. This means that repetead queries to the evaluator are fast!

## Use in Command Line

If you only need to use Globox from the command line like an application, you can install the package through [pipx](https://pypa.github.io/pipx/):

```shell
pipx install globox
```

Globox will then be in your shell path and usable from anywhere.

### Usage

Get a summary of annotations for one dataset:

```shell
globox summary /yolo/folder/ --format yolo
```

Convert annotations from one format to another one:

```shell
globox convert input/yolo/folder/ output_coco_file_path.json --format yolo --save_fmt coco
```

Evaluate a set of detections with COCO metrics, display them and save them in a CSV file:

```shell
globox evaluate groundtruths/ predictions.json --format yolo --format_dets coco -s results.csv
```

Show the help message for an exhaustive list of options:

```shell
globox summary -h
globox convert -h
globox evaluate -h
```

## Run Tests

Clone the repo with its test data:

```shell
git clone https://github.com/laclouis5/globox --recurse-submodules=tests/globox_test_data
cd globox
```

Install dependencies with [uv](https://github.com/astral-sh/uv):

```shell
uv sync --dev
```

Run the tests:

```shell
uv run pytest tests
```

## Speed Banchmarks

Speed benchmark can be executed with:

```shell
uv run python tests/benchmark.py -n 5
```

The following speed test is performed using Python 3.11 and `timeit` with 5 iterations on a 2021 MacBook Pro 14" (M1 Pro 8 Cores and 16 GB of RAM). The dataset is COCO 2017 Validation which comprises 5k images and 36 781 bounding boxes.

Task   |COCO |CVAT |OpenImage|LabelMe|PascalVOC|YOLO |TXT
-------|-----|-----|---------|-------|---------|-----|-----
Parsing|0.22s|0.12s|0.44s    |0.60s  |0.97s    |1.45s|1.12s
Saving |0.32s|0.17s|0.14s    |1.06s  |1.08s    |0.91s|0.85s

* `AnnotationSet.show_stats()`: 0.02 s
* Evalaution: 0.30 s

</details>

## Todo

* [x] Basic data structures and utilities
* [x] Parsers (ImageNet, COCO, YOLO, Pascal, OpenImage, CVAT, LabelMe)
* [x] Parser tests
* [x] Database summary and stats
* [x] Database converters
* [x] Visualization options
* [x] COCO Evaluation
* [x] Tests with a huge load (5k images)
* [x] CLI interface
* [x] Make `image_size` optional and raise err when required (bbox conversion)
* [x] Make file saving atomic with a temporary to avoid file corruption
* [x] Pip package!
* [ ] PascalVOC Evaluation
* [ ] Parsers for TFRecord and TensorFlow
* [ ] UI interface?

## Acknowledgement

This repo is based on the work of [Rafael Padilla](https://github.com/rafaelpadilla/review_object_detection_metrics).

## Contribution

Feel free to contribute, any help you can offer with this project is most welcome.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "globox",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "Louis Lac <lac.louis5@gmail.com>",
    "keywords": "annotation, average precision, bounding boxes, coco, cvat, mean average precision, metrics, object detection, openimages, pascal voc, yolo",
    "author": null,
    "author_email": "Louis Lac <lac.louis5@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/c3/de/ecc47a8bbf06bb39ae7f0b501f31de557e68fb2e3995be1908844a0af99a/globox-2.4.7.tar.gz",
    "platform": null,
    "description": "# Globox \u2014 Object Detection Toolbox\n\nThis framework can:\n\n* parse all kinds of object detection datasets (ImageNet, COCO, YOLO, PascalVOC, OpenImage, CVAT, LabelMe, etc.) and show statistics,\n* convert them to other formats (ImageNet, COCO, YOLO, PascalVOC, OpenImage, CVAT, LabelMe, etc.),\n* and evaluate predictions using standard object detection metrics such as $AP_{[.5:.05:.95]}$, $AP_{50}$, $mAP$, $AR_{1}$, $AR_{10}$, $AR_{100}$.\n\nThis framework can be used both as a library in your own code and as a command line tool. This tool is designed to be simple to use, fast and correct.\n\n## Install\n\nYou can install the package using pip:\n\n```shell\npip install globox\n```\n\n## Use as a Library\n\n### Parse Annotations\n\nThe library has three main components:\n\n* `BoundingBox`: represents a bounding box with a label and an optional confidence score\n* `Annotation`: represent the bounding boxes annotations for one image\n* `AnnotationSet`: represents annotations for a set of images (a database)\n\nThe `AnnotationSet` class contains static methods to read different dataset formats:\n\n```python\n# COCO\ncoco = AnnotationSet.from_coco(file_path=\"path/to/file.json\")\n\n# YOLOv5\nyolo = AnnotationSet.from_yolo_v5(\n    folder=\"path/to/files/\",\n    image_folder=\"path/to/images/\"\n)\n\n# Pascal VOC\npascal = AnnotationSet.from_pascal_voc(folder=\"path/to/files/\")\n```\n\n`Annotation` offers file-level granularity for compatible datasets:\n\n```python\nannotation = Annotation.from_labelme(file_path=\"path/to/file.xml\")\n```\n\nFor more specific implementations the `BoundingBox` class contains lots of utilities to parse bounding boxes in different formats, like the `create()` method.\n\n`AnnotationsSets` are set-like objects. They can be combined and annotations can be added:\n\n```python\ngts = coco | yolo\ngts.add(annotation)\n```\n\n### Inspect Datasets\n\nIterators and efficient lookup by `image_id`'s are easy to use:\n\n```python\nif annotation in gts:\n    print(\"This annotation is present.\")\n\nif \"image_123.jpg\" in gts.image_ids:\n    print(\"Annotation of image 'image_123.jpg' is present.\")\n\nfor box in gts.all_boxes:\n    print(box.label, box.area, box.is_ground_truth)\n\nfor annotation in gts:\n    nb_boxes = len(annotation.boxes)\n    print(f\"{annotation.image_id}: {nb_boxes} boxes\")\n```\n\nDatasets stats can printed to the console:\n\n```python\ncoco_gts.show_stats()\n```\n\n```text\n         Database Stats         \n\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 Label       \u2503 Images \u2503 Boxes \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 aeroplane   \u2502     10 \u2502    15 \u2502\n\u2502 bicycle     \u2502      7 \u2502    14 \u2502\n\u2502 bird        \u2502      4 \u2502     6 \u2502\n\u2502 boat        \u2502      7 \u2502    11 \u2502\n\u2502 bottle      \u2502      9 \u2502    13 \u2502\n\u2502 bus         \u2502      5 \u2502     6 \u2502\n\u2502 car         \u2502      6 \u2502    14 \u2502\n\u2502 cat         \u2502      4 \u2502     5 \u2502\n\u2502 chair       \u2502      9 \u2502    15 \u2502\n\u2502 cow         \u2502      6 \u2502    14 \u2502\n\u2502 diningtable \u2502      7 \u2502     7 \u2502\n\u2502 dog         \u2502      6 \u2502     8 \u2502\n\u2502 horse       \u2502      7 \u2502     7 \u2502\n\u2502 motorbike   \u2502      3 \u2502     5 \u2502\n\u2502 person      \u2502     41 \u2502    91 \u2502\n\u2502 pottedplant \u2502      6 \u2502     7 \u2502\n\u2502 sheep       \u2502      4 \u2502    10 \u2502\n\u2502 sofa        \u2502     10 \u2502    10 \u2502\n\u2502 train       \u2502      5 \u2502     6 \u2502\n\u2502 tvmonitor   \u2502      8 \u2502     9 \u2502\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Total       \u2502    100 \u2502   273 \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n```\n\n### Convert and Save to Many Formats\n\nDatasets can be converted to and saved in other formats:\n\n```python\n# ImageNet\ngts.save_imagenet(save_dir=\"pascalVOC_db/\")\n\n# YOLO Darknet\ngts.save_yolo_darknet(\n    save_dir=\"yolo_train/\", \n    label_to_id={\"cat\": 0, \"dog\": 1, \"racoon\": 2}\n)\n\n# YOLOv5\ngts.save_yolo_v5(\n    save_dir=\"yolo_train/\", \n    label_to_id={\"cat\": 0, \"dog\": 1, \"racoon\": 2},\n)\n\n# CVAT\ngts.save_cvat(path=\"train.xml\")\n```\n\n### COCO Evaluation\n\nCOCO Evaluation is also supported:\n\n```python\nevaluator = COCOEvaluator(\n    ground_truths=gts, \n    predictions=dets\n)\n\nap = evaluator.ap()\nar_100 = evaluator.ar_100()\nap_75 = evaluator.ap_75()\nap_small = evaluator.ap_small()\n...\n```\n\nAll COCO standard metrics can be displayed in a pretty printed table with:\n\n```python\nevaluator.show_summary()\n```\n\nwhich outputs:\n\n```text\n                              COCO Evaluation\n\u250f\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533...\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2533\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2513\n\u2503 Label     \u2503 AP 50:95 \u2503  AP 50 \u2503   \u2503   AR S \u2503   AR M \u2503   AR L \u2503\n\u2521\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547...\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2547\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2529\n\u2502 airplane  \u2502    22.7% \u2502  25.2% \u2502   \u2502   nan% \u2502  90.0% \u2502   0.0% \u2502\n\u2502 apple     \u2502    46.4% \u2502  57.4% \u2502   \u2502  48.5% \u2502   nan% \u2502   nan% \u2502\n\u2502 backpack  \u2502    54.8% \u2502  85.1% \u2502   \u2502 100.0% \u2502  72.0% \u2502   0.0% \u2502\n\u2502 banana    \u2502    73.6% \u2502  96.4% \u2502   \u2502   nan% \u2502 100.0% \u2502  70.0% \u2502\n.           .          .        .   .        .        .        .\n.           .          .        .   .        .        .        .\n.           .          .        .   .        .        .        .\n\u251c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c...\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u253c\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2524\n\u2502 Total     \u2502    50.3% \u2502  69.7% \u2502   \u2502  65.4% \u2502  60.3% \u2502  55.3% \u2502\n\u2514\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534...\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2534\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2518\n```\n\nThe array of results can be saved in CSV format:\n\n```python\nevaluator.save_csv(\"where/to/save/results.csv\")\n```\n\nCustom evaluations can be achieved with:\n\n```python\nevaluation = evaluator.evaluate(\n    iou_threshold=0.33,\n    max_detections=1_000,\n    size_range=(0.0, 10_000)\n)\n\nap = evaluation.ap()\ncat_ar = evaluation[\"cat\"].ar\n```\n\nEvaluations are cached by `(iou_threshold, max_detections, size_range)` keys. This means that repetead queries to the evaluator are fast!\n\n## Use in Command Line\n\nIf you only need to use Globox from the command line like an application, you can install the package through [pipx](https://pypa.github.io/pipx/):\n\n```shell\npipx install globox\n```\n\nGlobox will then be in your shell path and usable from anywhere.\n\n### Usage\n\nGet a summary of annotations for one dataset:\n\n```shell\nglobox summary /yolo/folder/ --format yolo\n```\n\nConvert annotations from one format to another one:\n\n```shell\nglobox convert input/yolo/folder/ output_coco_file_path.json --format yolo --save_fmt coco\n```\n\nEvaluate a set of detections with COCO metrics, display them and save them in a CSV file:\n\n```shell\nglobox evaluate groundtruths/ predictions.json --format yolo --format_dets coco -s results.csv\n```\n\nShow the help message for an exhaustive list of options:\n\n```shell\nglobox summary -h\nglobox convert -h\nglobox evaluate -h\n```\n\n## Run Tests\n\nClone the repo with its test data:\n\n```shell\ngit clone https://github.com/laclouis5/globox --recurse-submodules=tests/globox_test_data\ncd globox\n```\n\nInstall dependencies with [uv](https://github.com/astral-sh/uv):\n\n```shell\nuv sync --dev\n```\n\nRun the tests:\n\n```shell\nuv run pytest tests\n```\n\n## Speed Banchmarks\n\nSpeed benchmark can be executed with:\n\n```shell\nuv run python tests/benchmark.py -n 5\n```\n\nThe following speed test is performed using Python 3.11 and `timeit` with 5 iterations on a 2021 MacBook Pro 14\" (M1 Pro 8 Cores and 16 GB of RAM). The dataset is COCO 2017 Validation which comprises 5k images and 36 781 bounding boxes.\n\nTask   |COCO |CVAT |OpenImage|LabelMe|PascalVOC|YOLO |TXT\n-------|-----|-----|---------|-------|---------|-----|-----\nParsing|0.22s|0.12s|0.44s    |0.60s  |0.97s    |1.45s|1.12s\nSaving |0.32s|0.17s|0.14s    |1.06s  |1.08s    |0.91s|0.85s\n\n* `AnnotationSet.show_stats()`: 0.02 s\n* Evalaution: 0.30 s\n\n</details>\n\n## Todo\n\n* [x] Basic data structures and utilities\n* [x] Parsers (ImageNet, COCO, YOLO, Pascal, OpenImage, CVAT, LabelMe)\n* [x] Parser tests\n* [x] Database summary and stats\n* [x] Database converters\n* [x] Visualization options\n* [x] COCO Evaluation\n* [x] Tests with a huge load (5k images)\n* [x] CLI interface\n* [x] Make `image_size` optional and raise err when required (bbox conversion)\n* [x] Make file saving atomic with a temporary to avoid file corruption\n* [x] Pip package!\n* [ ] PascalVOC Evaluation\n* [ ] Parsers for TFRecord and TensorFlow\n* [ ] UI interface?\n\n## Acknowledgement\n\nThis repo is based on the work of [Rafael Padilla](https://github.com/rafaelpadilla/review_object_detection_metrics).\n\n## Contribution\n\nFeel free to contribute, any help you can offer with this project is most welcome.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Globox is a package and command line interface to read and convert object detection databases (COCO, YOLO, PascalVOC, LabelMe, CVAT, OpenImage, ...) and evaluate them with COCO and PascalVOC.",
    "version": "2.4.7",
    "project_urls": {
        "Documentation": "https://github.com/laclouis5/globox/#readme",
        "Homepage": "https://github.com/laclouis5/globox",
        "Issues": "https://github.com/laclouis5/globox/issues",
        "Repository": "https://github.com/laclouis5/globox"
    },
    "split_keywords": [
        "annotation",
        " average precision",
        " bounding boxes",
        " coco",
        " cvat",
        " mean average precision",
        " metrics",
        " object detection",
        " openimages",
        " pascal voc",
        " yolo"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "87748a408585dc4f94ebb1a070a4f060c063aa117e350066ca3070fabeff9205",
                "md5": "37084b7c31525d479c0b33c9d6921901",
                "sha256": "42db140e5467c9539826d32b2ece02f9f1fed510d847fdb5cfe7c73265fff72f"
            },
            "downloads": -1,
            "filename": "globox-2.4.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "37084b7c31525d479c0b33c9d6921901",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 34442,
            "upload_time": "2024-11-20T23:17:11",
            "upload_time_iso_8601": "2024-11-20T23:17:11.007973Z",
            "url": "https://files.pythonhosted.org/packages/87/74/8a408585dc4f94ebb1a070a4f060c063aa117e350066ca3070fabeff9205/globox-2.4.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c3deecc47a8bbf06bb39ae7f0b501f31de557e68fb2e3995be1908844a0af99a",
                "md5": "50490e12d9350dd33f73b6f83ac457b7",
                "sha256": "b2499d5edef2a99a2843bdae98104a70b2e5a570ba14db0d3b304777834d9e02"
            },
            "downloads": -1,
            "filename": "globox-2.4.7.tar.gz",
            "has_sig": false,
            "md5_digest": "50490e12d9350dd33f73b6f83ac457b7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 30591,
            "upload_time": "2024-11-20T23:17:12",
            "upload_time_iso_8601": "2024-11-20T23:17:12.833959Z",
            "url": "https://files.pythonhosted.org/packages/c3/de/ecc47a8bbf06bb39ae7f0b501f31de557e68fb2e3995be1908844a0af99a/globox-2.4.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-20 23:17:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "laclouis5",
    "github_project": "globox",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "globox"
}
        
Elapsed time: 1.71386s