glyphdeck


Nameglyphdeck JSON
Version 1.1.2 PyPI version JSON
download
home_pagehttps://github.com/Kyle-Ross/glyphdeck
SummaryThe glyphdeck library is a comprehensive toolkit designed to streamline & simplify various aspects of asynchronous LLM data processing workflows over high-volume, dense semantic data - like customer feedback, reviews and comments.
upload_time2024-10-08 14:53:02
maintainerNone
docs_urlNone
authorKyle Ross
requires_python<4.0.0,>=3.12.0
licenseElastic-2.0
keywords llm openai nlp semantic langchain
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GlyphDeck
[![PyPI version](https://img.shields.io/pypi/v/glyphdeck)](https://pypi.org/project/glyphdeck/)
![Python versions](https://img.shields.io/pypi/pyversions/glyphdeck)
![License](https://img.shields.io/pypi/l/glyphdeck)
[![Go to documentation](https://readthedocs.org/projects/glyphdeck/badge/)](https://glyphdeck.readthedocs.io/en/latest/)
[![Read the Docs Badge](https://img.shields.io/badge/Read%20the%20Docs-8CA1AF?logo=readthedocs&logoColor=fff&style=flat)](https://glyphdeck.readthedocs.io/)

The glyphdeck library is a comprehensive toolkit designed to streamline
& simplify various aspects of asynchronous LLM data processing workflows
over high-volume, dense semantic data - like customer feedback, reviews
and comments.

Common aspects of the LLM data workflow are handled end-to-end including
async llm calls, data validation, sanitisation, transformation, caching
and step chaining, facilitating the fast development of robust, error
free LLM data workflows.

Its also equiped with caching and a configurable logging facility that
makes complex asyncronous LLM workflows much easier to configure,
understand and debug.

## Features

-   **Asynchronous**: Rip through tabular data with asynchronous llm
    usage
-   **Auto-scaling**: Don't worry about api errors - the `LLMHandler`
    automatically scales to your api limits
-   **Rapid config**: Simple syntax in a highly abstracted interface
    makes set up a breeze
-   **Data chaining**: Automatically pass data between steps with the
    `Cascade` class
-   **Self validating**: The Cascade class automatically maintains
    dataset integrity
-   **Pydantic models**: Use built-in or custom Pydantic data models for
    structured llm output
-   **Type enforcement**: Get your structured data in the correct format
    from the llm every time
-   **Private data**: `Sanitiser` class strips out common private data
    patterns before making api calls
-   **Automatic caching**: Save on API costs and re-use results
-   **Logging**: Built-in logging facility helps to debug your set-ups &
    peer inside the event loop

## Set-up

### πŸ”§ Install

``` 
pip install glyphdeck
```

### πŸ”‘ Set API Key

Set your `OPENAI_API_KEY` with a
[command](https://platform.openai.com/docs/quickstart?language-preference=python),
or add it to your [environment
variables](https://en.wikipedia.org/wiki/Environment_variable).

``` 
setx OPENAI_API_KEY "your_api_key_here"
```

### πŸ“₯ Import

``` python
import glyphdeck as gd
```

## Usage

### 🌊 Cascades

The `Cascade` class is the primary interface for the glyphdeck library.
It handles and processes data in a record-like structure, providing easy
to use syntax for LLM data handling workflows.

It validates and enforces all data movements against a common id,
ensuring that each record has a unique, immutable identifier that
remains consistent, regardless of other changes.

This all combines to let you spin up LLM workflows in record time.

### πŸ„ Example

``` python
import glyphdeck as gd

# Provide a dataframe or a path to a file (csv or xlsx)
data_source = r"tests\testdata.pizzashopreviews.xlsx"

# Intialise cascade instance and identify the unique id (required) and target data
cascade = gd.Cascade(data_source, "Review", "Review Text")

# Optionally remove private information
cascade.sanitiser.run()

# Prepare the llm
cascade.set_llm_handler(
    provider="OpenAI",
    model="gpt-4o-mini",
    system_message=(
        "You are an expert pizza shop customer feedback analyst system."
        "Analyse the feedback and return results in the correct format."
    ),
    validation_model=gd.validators.SubCatsSentiment,
    cache_identifier="pizzshop_sentiment",
)

# Run the llm_handler
cascade.llm_handler.run("llm_category_sentiment")

```

### ✨ Output

| Review Id | Review                                                                                                                                  | Review_sub_categories                                                          | Review_sentiment_score |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|
| 1         | I love this place, fantastic pizza and great service. It's family run and it shows. Out of heaps of good local options it is still the… | Pizza Quality,Service Quality,Family Run,Local Options,Pricing,Parking         | 0.95                   |
| 2         | Got disappointed. Not good customer service. definitely not great pizza.We went there yesterday to…                                     | Customer Service,Pizza Quality,Dine-In Experience,Promotions,Family Experience | -0.75                  |

------------------------------------------------------------------------

#### πŸš€ That's just the start!

Glyphdeck is highly customisable with useful optional commands in every
function, class & method. Use the Cascade and other tools to mix and
match, create feedback loops and more - all with blazing asynchronous
speed through the OpenAI API.

See the full capabilities in the extensive [documentation](https://glyphdeck.readthedocs.io/).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Kyle-Ross/glyphdeck",
    "name": "glyphdeck",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0.0,>=3.12.0",
    "maintainer_email": null,
    "keywords": "llm, openai, nlp, semantic, langchain",
    "author": "Kyle Ross",
    "author_email": "107285758+Kyle-Ross@users.noreply.github.com",
    "download_url": "https://files.pythonhosted.org/packages/4c/67/e77214d2df70b3d7936ddbbd9553b25e3147051198b35480e66e5619746b/glyphdeck-1.1.2.tar.gz",
    "platform": null,
    "description": "# GlyphDeck\n[![PyPI version](https://img.shields.io/pypi/v/glyphdeck)](https://pypi.org/project/glyphdeck/)\n![Python versions](https://img.shields.io/pypi/pyversions/glyphdeck)\n![License](https://img.shields.io/pypi/l/glyphdeck)\n[![Go to documentation](https://readthedocs.org/projects/glyphdeck/badge/)](https://glyphdeck.readthedocs.io/en/latest/)\n[![Read the Docs Badge](https://img.shields.io/badge/Read%20the%20Docs-8CA1AF?logo=readthedocs&logoColor=fff&style=flat)](https://glyphdeck.readthedocs.io/)\n\nThe glyphdeck library is a comprehensive toolkit designed to streamline\n& simplify various aspects of asynchronous LLM data processing workflows\nover high-volume, dense semantic data - like customer feedback, reviews\nand comments.\n\nCommon aspects of the LLM data workflow are handled end-to-end including\nasync llm calls, data validation, sanitisation, transformation, caching\nand step chaining, facilitating the fast development of robust, error\nfree LLM data workflows.\n\nIts also equiped with caching and a configurable logging facility that\nmakes complex asyncronous LLM workflows much easier to configure,\nunderstand and debug.\n\n## Features\n\n-   **Asynchronous**: Rip through tabular data with asynchronous llm\n    usage\n-   **Auto-scaling**: Don't worry about api errors - the `LLMHandler`\n    automatically scales to your api limits\n-   **Rapid config**: Simple syntax in a highly abstracted interface\n    makes set up a breeze\n-   **Data chaining**: Automatically pass data between steps with the\n    `Cascade` class\n-   **Self validating**: The Cascade class automatically maintains\n    dataset integrity\n-   **Pydantic models**: Use built-in or custom Pydantic data models for\n    structured llm output\n-   **Type enforcement**: Get your structured data in the correct format\n    from the llm every time\n-   **Private data**: `Sanitiser` class strips out common private data\n    patterns before making api calls\n-   **Automatic caching**: Save on API costs and re-use results\n-   **Logging**: Built-in logging facility helps to debug your set-ups &\n    peer inside the event loop\n\n## Set-up\n\n### \ud83d\udd27 Install\n\n``` \npip install glyphdeck\n```\n\n### \ud83d\udd11 Set API Key\n\nSet your `OPENAI_API_KEY` with a\n[command](https://platform.openai.com/docs/quickstart?language-preference=python),\nor add it to your [environment\nvariables](https://en.wikipedia.org/wiki/Environment_variable).\n\n``` \nsetx OPENAI_API_KEY \"your_api_key_here\"\n```\n\n### \ud83d\udce5 Import\n\n``` python\nimport glyphdeck as gd\n```\n\n## Usage\n\n### \ud83c\udf0a Cascades\n\nThe `Cascade` class is the primary interface for the glyphdeck library.\nIt handles and processes data in a record-like structure, providing easy\nto use syntax for LLM data handling workflows.\n\nIt validates and enforces all data movements against a common id,\nensuring that each record has a unique, immutable identifier that\nremains consistent, regardless of other changes.\n\nThis all combines to let you spin up LLM workflows in record time.\n\n### \ud83c\udfc4 Example\n\n``` python\nimport glyphdeck as gd\n\n# Provide a dataframe or a path to a file (csv or xlsx)\ndata_source = r\"tests\\testdata.pizzashopreviews.xlsx\"\n\n# Intialise cascade instance and identify the unique id (required) and target data\ncascade = gd.Cascade(data_source, \"Review\", \"Review Text\")\n\n# Optionally remove private information\ncascade.sanitiser.run()\n\n# Prepare the llm\ncascade.set_llm_handler(\n    provider=\"OpenAI\",\n    model=\"gpt-4o-mini\",\n    system_message=(\n        \"You are an expert pizza shop customer feedback analyst system.\"\n        \"Analyse the feedback and return results in the correct format.\"\n    ),\n    validation_model=gd.validators.SubCatsSentiment,\n    cache_identifier=\"pizzshop_sentiment\",\n)\n\n# Run the llm_handler\ncascade.llm_handler.run(\"llm_category_sentiment\")\n\n```\n\n### \u2728 Output\n\n| Review Id | Review                                                                                                                                  | Review_sub_categories                                                          | Review_sentiment_score |\n|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|\n| 1         | I love this place, fantastic pizza and great service. It's family run and it shows. Out of heaps of good local options it is still the\u2026 | Pizza Quality,Service Quality,Family Run,Local Options,Pricing,Parking         | 0.95                   |\n| 2         | Got disappointed. Not good customer service. definitely not great pizza.We went there yesterday to\u2026                                     | Customer Service,Pizza Quality,Dine-In Experience,Promotions,Family Experience | -0.75                  |\n\n------------------------------------------------------------------------\n\n#### \ud83d\ude80 That's just the start!\n\nGlyphdeck is highly customisable with useful optional commands in every\nfunction, class & method. Use the Cascade and other tools to mix and\nmatch, create feedback loops and more - all with blazing asynchronous\nspeed through the OpenAI API.\n\nSee the full capabilities in the extensive [documentation](https://glyphdeck.readthedocs.io/).\n",
    "bugtrack_url": null,
    "license": "Elastic-2.0",
    "summary": "The glyphdeck library is a comprehensive toolkit designed to streamline & simplify various aspects of asynchronous LLM data processing workflows over high-volume, dense semantic data - like customer feedback, reviews and comments.",
    "version": "1.1.2",
    "project_urls": {
        "Documentation": "https://glyphdeck.readthedocs.io/en/latest/",
        "Homepage": "https://github.com/Kyle-Ross/glyphdeck",
        "Repository": "https://github.com/Kyle-Ross/glyphdeck"
    },
    "split_keywords": [
        "llm",
        " openai",
        " nlp",
        " semantic",
        " langchain"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9d33e2343c0c9ee37d94bf1d5dd56e08509422cb7ced90991fe6c17b61de99cf",
                "md5": "b47706626d9ebc2b532c33a9162e8b7a",
                "sha256": "d116275e12182ad57cd2542db15051abf2d70064a5fc814958bed98d8dd71d69"
            },
            "downloads": -1,
            "filename": "glyphdeck-1.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b47706626d9ebc2b532c33a9162e8b7a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0.0,>=3.12.0",
            "size": 55700,
            "upload_time": "2024-10-08T14:53:01",
            "upload_time_iso_8601": "2024-10-08T14:53:01.236637Z",
            "url": "https://files.pythonhosted.org/packages/9d/33/e2343c0c9ee37d94bf1d5dd56e08509422cb7ced90991fe6c17b61de99cf/glyphdeck-1.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4c67e77214d2df70b3d7936ddbbd9553b25e3147051198b35480e66e5619746b",
                "md5": "7705fe74f9fb98541df778852ff2e8da",
                "sha256": "b8afdf3a0944f99a287d44a319c70d26048affcc778d2a5d6b7fe2b111062a6b"
            },
            "downloads": -1,
            "filename": "glyphdeck-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "7705fe74f9fb98541df778852ff2e8da",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0.0,>=3.12.0",
            "size": 48052,
            "upload_time": "2024-10-08T14:53:02",
            "upload_time_iso_8601": "2024-10-08T14:53:02.541550Z",
            "url": "https://files.pythonhosted.org/packages/4c/67/e77214d2df70b3d7936ddbbd9553b25e3147051198b35480e66e5619746b/glyphdeck-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-08 14:53:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Kyle-Ross",
    "github_project": "glyphdeck",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "glyphdeck"
}
        
Elapsed time: 0.43813s