gmplot |PyVersions|_
====================
.. |PyVersions| image:: https://img.shields.io/pypi/pyversions/gmplot?style=flat-square
.. _PyVersions: https://www.python.org/
A matplotlib-like interface to render all the data you'd like on top of Google Maps.
Several plotting methods make creating exploratory map views effortless.
To install: ``pip install gmplot``
Documentation (with examples): `API Reference <https://github.com/gmplot/gmplot/wiki>`_
Crash course
------------
.. code:: python
import gmplot
# Create the map plotter:
apikey = '' # (your API key here)
gmap = gmplot.GoogleMapPlotter(37.766956, -122.448481, 14, apikey=apikey)
# Outline the Golden Gate Park:
golden_gate_park = zip(*[
(37.771269, -122.511015),
(37.773495, -122.464830),
(37.774797, -122.454538),
(37.771988, -122.454018),
(37.773646, -122.440979),
(37.772742, -122.440797),
(37.771096, -122.453889),
(37.768669, -122.453518),
(37.766227, -122.460213),
(37.764028, -122.510347)
])
gmap.polygon(*golden_gate_park, color='cornflowerblue', edge_width=10)
# Highlight some attractions:
attractions_lats, attractions_lngs = zip(*[
(37.769901, -122.498331),
(37.768645, -122.475328),
(37.771478, -122.468677),
(37.769867, -122.466102),
(37.767187, -122.467496),
(37.770104, -122.470436)
])
gmap.scatter(attractions_lats, attractions_lngs, color='#3B0B39', size=40, marker=False)
# Mark a hidden gem:
gmap.marker(37.770776, -122.461689, color='cornflowerblue')
# Draw the map:
gmap.draw('map.html')
.. image:: https://raw.githubusercontent.com/gmplot/gmplot/master/docs/images/README_Example.png
----
Inspired by Yifei Jiang's (jiangyifei@gmail.com) `pygmaps <http://code.google.com/p/pygmaps/>`_ module.
Raw data
{
"_id": null,
"home_page": "",
"name": "gmplot",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python google-maps visualization",
"author": "gmplot contributors",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/61/fa/b37cfaafdb919542224dcd5dcfa7cb1d19e06055fc7c04b13b0728da33c6/gmplot-1.4.1.tar.gz",
"platform": "",
"description": "gmplot |PyVersions|_\n====================\n.. |PyVersions| image:: https://img.shields.io/pypi/pyversions/gmplot?style=flat-square\n.. _PyVersions: https://www.python.org/\n\nA matplotlib-like interface to render all the data you'd like on top of Google Maps.\n\nSeveral plotting methods make creating exploratory map views effortless.\n\nTo install: ``pip install gmplot``\n\nDocumentation (with examples): `API Reference <https://github.com/gmplot/gmplot/wiki>`_\n\nCrash course\n------------\n\n.. code:: python\n\n import gmplot\n\n # Create the map plotter:\n apikey = '' # (your API key here)\n gmap = gmplot.GoogleMapPlotter(37.766956, -122.448481, 14, apikey=apikey)\n\n # Outline the Golden Gate Park:\n golden_gate_park = zip(*[\n (37.771269, -122.511015),\n (37.773495, -122.464830),\n (37.774797, -122.454538),\n (37.771988, -122.454018),\n (37.773646, -122.440979),\n (37.772742, -122.440797),\n (37.771096, -122.453889),\n (37.768669, -122.453518),\n (37.766227, -122.460213),\n (37.764028, -122.510347)\n ])\n gmap.polygon(*golden_gate_park, color='cornflowerblue', edge_width=10)\n\n # Highlight some attractions:\n attractions_lats, attractions_lngs = zip(*[\n (37.769901, -122.498331),\n (37.768645, -122.475328),\n (37.771478, -122.468677),\n (37.769867, -122.466102),\n (37.767187, -122.467496),\n (37.770104, -122.470436)\n ])\n gmap.scatter(attractions_lats, attractions_lngs, color='#3B0B39', size=40, marker=False)\n\n # Mark a hidden gem:\n gmap.marker(37.770776, -122.461689, color='cornflowerblue')\n\n # Draw the map:\n gmap.draw('map.html')\n\n.. image:: https://raw.githubusercontent.com/gmplot/gmplot/master/docs/images/README_Example.png\n\n----\n\nInspired by Yifei Jiang's (jiangyifei@gmail.com) `pygmaps <http://code.google.com/p/pygmaps/>`_ module.\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A matplotlib-like interface to plot data with Google Maps.",
"version": "1.4.1",
"project_urls": {
"Documentation": "https://github.com/gmplot/gmplot/wiki",
"Source": "https://github.com/gmplot/gmplot",
"Tracker": "https://github.com/gmplot/gmplot/issues"
},
"split_keywords": [
"python",
"google-maps",
"visualization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2f2f45399c0a3b75d22a6ece1a1732a1670836cf284de7c1f91379a8d9b666a1",
"md5": "c81a209d21757e117aa9f193d4bb3f24",
"sha256": "873bcecd90f0e63a73b2876e15a2225145d726f3b7cfb47a363a3a5459fc778d"
},
"downloads": -1,
"filename": "gmplot-1.4.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c81a209d21757e117aa9f193d4bb3f24",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 164697,
"upload_time": "2020-06-26T08:08:56",
"upload_time_iso_8601": "2020-06-26T08:08:56.650075Z",
"url": "https://files.pythonhosted.org/packages/2f/2f/45399c0a3b75d22a6ece1a1732a1670836cf284de7c1f91379a8d9b666a1/gmplot-1.4.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "61fab37cfaafdb919542224dcd5dcfa7cb1d19e06055fc7c04b13b0728da33c6",
"md5": "9082b32fe2c6ad60dfcf3fdeef467b71",
"sha256": "cfe72d251c17b5c05043169d121a9728554bf65b8c96760ce9fabb6d269c6667"
},
"downloads": -1,
"filename": "gmplot-1.4.1.tar.gz",
"has_sig": false,
"md5_digest": "9082b32fe2c6ad60dfcf3fdeef467b71",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 136267,
"upload_time": "2020-06-26T08:08:57",
"upload_time_iso_8601": "2020-06-26T08:08:57.695363Z",
"url": "https://files.pythonhosted.org/packages/61/fa/b37cfaafdb919542224dcd5dcfa7cb1d19e06055fc7c04b13b0728da33c6/gmplot-1.4.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2020-06-26 08:08:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "gmplot",
"github_project": "gmplot",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [],
"lcname": "gmplot"
}