goeieDAG


NamegoeieDAG JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/mcejp/goeieDAG
SummaryTask crunching with Ninja or Make
upload_time2024-07-07 12:36:27
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords dag make makefile ninja
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # goeieDAG

_/ɣu.jə.ˈdɑx/: hello, good day (Dutch greeting used during daytime)_

goeieDAG provides a unified Python API to Ninja and Make (_TODO_) build systems, aiming to
make it extremely easy to benefit from parallel processing in any graph-like workflow.


## Installation

    pip install goeieDAG==0.0.2

## Usage

```python
from pathlib import Path

import goeiedag
from goeiedag import ALL_INPUTS, INPUT, OUTPUT

workdir = Path("output")

graph = goeiedag.Graph()

# Extract OS name from /etc/os-release
graph.add(["grep", "^NAME=", INPUT, ">", OUTPUT],
          inputs=["/etc/os-release"],
          outputs=["os-name.txt"])
# Get username
graph.add(["whoami", ">", OUTPUT],
          inputs=[],
          outputs=["username.txt"])
# Glue together to produce output
graph.add(["cat", ALL_INPUTS, ">", OUTPUT.result],
          inputs=["os-name.txt", "username.txt"],
          outputs=dict(result="result.txt"))  # can also use a dictionary and refer to inputs/outputs by name

goeiedag.build_all(graph, workdir)

# Print output
print((workdir / "result.txt").read_text())
```


## Q&A

### Why use the _files and commands_ model rather than _Python objects and functions_?

- It is a tested and proven paradigm (`make` traces back to _1976_!)
- It provides an obvious way of evaluating which products need rebuilding (subject to an
  accurate dependency graph)
- It naturally isolates and parallelizes individual build tasks
- It is agnostic as to how data objects are serialized (convenient for the library author...)
- Graph edges are implicitly defined by input/output file names
- A high-quality executor (Ninja) is available and installable via a Python package

### How is this different from using the Ninja package directly?

- Simpler mental model & usage: no need to separately define build rules or think about implicit/explicit inputs and
  outputs
- API accepts Paths; no need to cast everything to `str`!
- Higher-level API in general (for example, the output directory is created automatically)


## Similar projects

- [Ninja](https://pypi.org/project/ninja/) (Python package) -- provides a lower-level API,
  used by goeieDAG as back-end
- [TaskGraph](https://github.com/natcap/taskgraph/) -- similar project, but centered around
  Python functions and in-process parallelism
- [Snakemake](https://snakemake.github.io/) -- similar goals, but a stand-alone tool rather
  than a library
- [Dask](https://dask.org/) -- different execution model; caching of intermediate results
  is left up to the user
- [doit](https://pydoit.org/)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mcejp/goeieDAG",
    "name": "goeieDAG",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "dag, make, makefile, ninja",
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/c8/70/1e6c7cb8bbe4d65178e70cdf23eda6a034d48c93a36212c929796e5cd54c/goeiedag-0.0.2.tar.gz",
    "platform": null,
    "description": "# goeieDAG\n\n_/\u0263u.j\u0259.\u02c8d\u0251x/: hello, good day (Dutch greeting used during daytime)_\n\ngoeieDAG provides a unified Python API to Ninja and Make (_TODO_) build systems, aiming to\nmake it extremely easy to benefit from parallel processing in any graph-like workflow.\n\n\n## Installation\n\n    pip install goeieDAG==0.0.2\n\n## Usage\n\n```python\nfrom pathlib import Path\n\nimport goeiedag\nfrom goeiedag import ALL_INPUTS, INPUT, OUTPUT\n\nworkdir = Path(\"output\")\n\ngraph = goeiedag.Graph()\n\n# Extract OS name from /etc/os-release\ngraph.add([\"grep\", \"^NAME=\", INPUT, \">\", OUTPUT],\n          inputs=[\"/etc/os-release\"],\n          outputs=[\"os-name.txt\"])\n# Get username\ngraph.add([\"whoami\", \">\", OUTPUT],\n          inputs=[],\n          outputs=[\"username.txt\"])\n# Glue together to produce output\ngraph.add([\"cat\", ALL_INPUTS, \">\", OUTPUT.result],\n          inputs=[\"os-name.txt\", \"username.txt\"],\n          outputs=dict(result=\"result.txt\"))  # can also use a dictionary and refer to inputs/outputs by name\n\ngoeiedag.build_all(graph, workdir)\n\n# Print output\nprint((workdir / \"result.txt\").read_text())\n```\n\n\n## Q&A\n\n### Why use the _files and commands_ model rather than _Python objects and functions_?\n\n- It is a tested and proven paradigm (`make` traces back to _1976_!)\n- It provides an obvious way of evaluating which products need rebuilding (subject to an\n  accurate dependency graph)\n- It naturally isolates and parallelizes individual build tasks\n- It is agnostic as to how data objects are serialized (convenient for the library author...)\n- Graph edges are implicitly defined by input/output file names\n- A high-quality executor (Ninja) is available and installable via a Python package\n\n### How is this different from using the Ninja package directly?\n\n- Simpler mental model & usage: no need to separately define build rules or think about implicit/explicit inputs and\n  outputs\n- API accepts Paths; no need to cast everything to `str`!\n- Higher-level API in general (for example, the output directory is created automatically)\n\n\n## Similar projects\n\n- [Ninja](https://pypi.org/project/ninja/) (Python package) -- provides a lower-level API,\n  used by goeieDAG as back-end\n- [TaskGraph](https://github.com/natcap/taskgraph/) -- similar project, but centered around\n  Python functions and in-process parallelism\n- [Snakemake](https://snakemake.github.io/) -- similar goals, but a stand-alone tool rather\n  than a library\n- [Dask](https://dask.org/) -- different execution model; caching of intermediate results\n  is left up to the user\n- [doit](https://pydoit.org/)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Task crunching with Ninja or Make",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/mcejp/goeieDAG"
    },
    "split_keywords": [
        "dag",
        " make",
        " makefile",
        " ninja"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "96ddf3d6c1a772800ca6e53b3649337751a37d07d37d9c2c0636842f4a40cd9e",
                "md5": "a45ab4a2c7160fd41eae51a79d2b4cf1",
                "sha256": "33d12315959fc0fe78252d890eb05181111288a3541daa6166f78ca980a52baf"
            },
            "downloads": -1,
            "filename": "goeieDAG-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a45ab4a2c7160fd41eae51a79d2b4cf1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 7901,
            "upload_time": "2024-07-07T12:36:26",
            "upload_time_iso_8601": "2024-07-07T12:36:26.881208Z",
            "url": "https://files.pythonhosted.org/packages/96/dd/f3d6c1a772800ca6e53b3649337751a37d07d37d9c2c0636842f4a40cd9e/goeieDAG-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c8701e6c7cb8bbe4d65178e70cdf23eda6a034d48c93a36212c929796e5cd54c",
                "md5": "fc25be42a755a0bda56166b910c0b970",
                "sha256": "103a025a64d2ccc2946865be45304b104d3fb4efcd016693bdc1747b9b111bd9"
            },
            "downloads": -1,
            "filename": "goeiedag-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "fc25be42a755a0bda56166b910c0b970",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 7129,
            "upload_time": "2024-07-07T12:36:27",
            "upload_time_iso_8601": "2024-07-07T12:36:27.957180Z",
            "url": "https://files.pythonhosted.org/packages/c8/70/1e6c7cb8bbe4d65178e70cdf23eda6a034d48c93a36212c929796e5cd54c/goeiedag-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-07 12:36:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mcejp",
    "github_project": "goeieDAG",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "goeiedag"
}
        
Elapsed time: 0.26037s