gpfy


Namegpfy JSON
Version 0.7.0 PyPI version JSON
download
home_pageNone
SummaryGaussian process with spherical harmonic features in JAX
upload_time2025-08-24 15:23:37
maintainerNone
docs_urlNone
authorNone
requires_python<3.14,>=3.11
licenseApache-2.0
keywords gaussian process spherical harmonics jax
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # $GP \mathcal{f} Y_\ell^m$

A lightweight library in JAX for Gaussian process with spherical kernels and sparse spherical harmonic inducing features.

$GP \mathcal{f} Y_\ell^m$ is based on the simple [flax.struct](https://github.com/google/flax/blob/main/flax/struct.py) dataclass. It implements [(Eleftheriadis et al. 2023)](https://arxiv.org/abs/2303.15948), which revisits the Sparse Gaussian Process with Spherical Harmonic features from [Dutordoir et al. 2020](http://proceedings.mlr.press/v119/dutordoir20a.html), and introduces:

1. `PolynomialDecay` kernel with "continuous" depth.
2. Sparse orthogonal basis derived from `SphericalHarmonics` features with phase truncation.

## Installation

### Latest (stable) release from PyPI

```bash
pip install gpfy
```

### Development version
Alternatively, you can install the latest GitHub `develop` version.
First create a virtual enviroment via conda:
```bash
conda create -n gpfy_env python=3.10.0
conda activate gpfy_env
```

Then clone a copy of the repository to your local machine and run the setup configuration in development mode:
```bash
git clone https://github.com/stefanosele/GPfY.git
cd GPfY
make install
```
This will automatically install all required dependencies.

Finally you can check the installation via running the tests:
```bash
make test
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "gpfy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.14,>=3.11",
    "maintainer_email": null,
    "keywords": "gaussian process, spherical harmonics, jax",
    "author": null,
    "author_email": "Stefanos Eleftheriadis <stelefth@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/1b/fe/fe9aa587da144a57c0a775f933507cbef83743c010d3fc29ee4c571e00de/gpfy-0.7.0.tar.gz",
    "platform": null,
    "description": "# $GP \\mathcal{f} Y_\\ell^m$\n\nA lightweight library in JAX for Gaussian process with spherical kernels and sparse spherical harmonic inducing features.\n\n$GP \\mathcal{f} Y_\\ell^m$ is based on the simple [flax.struct](https://github.com/google/flax/blob/main/flax/struct.py) dataclass. It implements [(Eleftheriadis et al. 2023)](https://arxiv.org/abs/2303.15948), which revisits the Sparse Gaussian Process with Spherical Harmonic features from [Dutordoir et al. 2020](http://proceedings.mlr.press/v119/dutordoir20a.html), and introduces:\n\n1. `PolynomialDecay` kernel with \"continuous\" depth.\n2. Sparse orthogonal basis derived from `SphericalHarmonics` features with phase truncation.\n\n## Installation\n\n### Latest (stable) release from PyPI\n\n```bash\npip install gpfy\n```\n\n### Development version\nAlternatively, you can install the latest GitHub `develop` version.\nFirst create a virtual enviroment via conda:\n```bash\nconda create -n gpfy_env python=3.10.0\nconda activate gpfy_env\n```\n\nThen clone a copy of the repository to your local machine and run the setup configuration in development mode:\n```bash\ngit clone https://github.com/stefanosele/GPfY.git\ncd GPfY\nmake install\n```\nThis will automatically install all required dependencies.\n\nFinally you can check the installation via running the tests:\n```bash\nmake test\n```\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Gaussian process with spherical harmonic features in JAX",
    "version": "0.7.0",
    "project_urls": null,
    "split_keywords": [
        "gaussian process",
        " spherical harmonics",
        " jax"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "088b10d3bb546f66ea9831860e6cf4965624759dc41c25b2dc13df1bc86802fa",
                "md5": "b897da4943db4ff16d6fa80bcb949931",
                "sha256": "96167e2d484c8270dd0b372bae0b712991060f9824e70a299adf4b143e7428de"
            },
            "downloads": -1,
            "filename": "gpfy-0.7.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b897da4943db4ff16d6fa80bcb949931",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.14,>=3.11",
            "size": 2924006,
            "upload_time": "2025-08-24T15:23:33",
            "upload_time_iso_8601": "2025-08-24T15:23:33.547409Z",
            "url": "https://files.pythonhosted.org/packages/08/8b/10d3bb546f66ea9831860e6cf4965624759dc41c25b2dc13df1bc86802fa/gpfy-0.7.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1bfefe9aa587da144a57c0a775f933507cbef83743c010d3fc29ee4c571e00de",
                "md5": "f804f416e6830de5750e7ea247fafd78",
                "sha256": "821a6d1c08c61f9ab29c8d53a480cfb5b2f3836fecc621d6565d0002055e93ab"
            },
            "downloads": -1,
            "filename": "gpfy-0.7.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f804f416e6830de5750e7ea247fafd78",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.14,>=3.11",
            "size": 2921092,
            "upload_time": "2025-08-24T15:23:37",
            "upload_time_iso_8601": "2025-08-24T15:23:37.181905Z",
            "url": "https://files.pythonhosted.org/packages/1b/fe/fe9aa587da144a57c0a775f933507cbef83743c010d3fc29ee4c571e00de/gpfy-0.7.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-24 15:23:37",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "gpfy"
}
        
Elapsed time: 1.76499s