Name | gpfy JSON |
Version |
0.7.0
JSON |
| download |
home_page | None |
Summary | Gaussian process with spherical harmonic features in JAX |
upload_time | 2025-08-24 15:23:37 |
maintainer | None |
docs_url | None |
author | None |
requires_python | <3.14,>=3.11 |
license | Apache-2.0 |
keywords |
gaussian process
spherical harmonics
jax
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# $GP \mathcal{f} Y_\ell^m$
A lightweight library in JAX for Gaussian process with spherical kernels and sparse spherical harmonic inducing features.
$GP \mathcal{f} Y_\ell^m$ is based on the simple [flax.struct](https://github.com/google/flax/blob/main/flax/struct.py) dataclass. It implements [(Eleftheriadis et al. 2023)](https://arxiv.org/abs/2303.15948), which revisits the Sparse Gaussian Process with Spherical Harmonic features from [Dutordoir et al. 2020](http://proceedings.mlr.press/v119/dutordoir20a.html), and introduces:
1. `PolynomialDecay` kernel with "continuous" depth.
2. Sparse orthogonal basis derived from `SphericalHarmonics` features with phase truncation.
## Installation
### Latest (stable) release from PyPI
```bash
pip install gpfy
```
### Development version
Alternatively, you can install the latest GitHub `develop` version.
First create a virtual enviroment via conda:
```bash
conda create -n gpfy_env python=3.10.0
conda activate gpfy_env
```
Then clone a copy of the repository to your local machine and run the setup configuration in development mode:
```bash
git clone https://github.com/stefanosele/GPfY.git
cd GPfY
make install
```
This will automatically install all required dependencies.
Finally you can check the installation via running the tests:
```bash
make test
```
Raw data
{
"_id": null,
"home_page": null,
"name": "gpfy",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.14,>=3.11",
"maintainer_email": null,
"keywords": "gaussian process, spherical harmonics, jax",
"author": null,
"author_email": "Stefanos Eleftheriadis <stelefth@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/1b/fe/fe9aa587da144a57c0a775f933507cbef83743c010d3fc29ee4c571e00de/gpfy-0.7.0.tar.gz",
"platform": null,
"description": "# $GP \\mathcal{f} Y_\\ell^m$\n\nA lightweight library in JAX for Gaussian process with spherical kernels and sparse spherical harmonic inducing features.\n\n$GP \\mathcal{f} Y_\\ell^m$ is based on the simple [flax.struct](https://github.com/google/flax/blob/main/flax/struct.py) dataclass. It implements [(Eleftheriadis et al. 2023)](https://arxiv.org/abs/2303.15948), which revisits the Sparse Gaussian Process with Spherical Harmonic features from [Dutordoir et al. 2020](http://proceedings.mlr.press/v119/dutordoir20a.html), and introduces:\n\n1. `PolynomialDecay` kernel with \"continuous\" depth.\n2. Sparse orthogonal basis derived from `SphericalHarmonics` features with phase truncation.\n\n## Installation\n\n### Latest (stable) release from PyPI\n\n```bash\npip install gpfy\n```\n\n### Development version\nAlternatively, you can install the latest GitHub `develop` version.\nFirst create a virtual enviroment via conda:\n```bash\nconda create -n gpfy_env python=3.10.0\nconda activate gpfy_env\n```\n\nThen clone a copy of the repository to your local machine and run the setup configuration in development mode:\n```bash\ngit clone https://github.com/stefanosele/GPfY.git\ncd GPfY\nmake install\n```\nThis will automatically install all required dependencies.\n\nFinally you can check the installation via running the tests:\n```bash\nmake test\n```\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Gaussian process with spherical harmonic features in JAX",
"version": "0.7.0",
"project_urls": null,
"split_keywords": [
"gaussian process",
" spherical harmonics",
" jax"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "088b10d3bb546f66ea9831860e6cf4965624759dc41c25b2dc13df1bc86802fa",
"md5": "b897da4943db4ff16d6fa80bcb949931",
"sha256": "96167e2d484c8270dd0b372bae0b712991060f9824e70a299adf4b143e7428de"
},
"downloads": -1,
"filename": "gpfy-0.7.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b897da4943db4ff16d6fa80bcb949931",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.14,>=3.11",
"size": 2924006,
"upload_time": "2025-08-24T15:23:33",
"upload_time_iso_8601": "2025-08-24T15:23:33.547409Z",
"url": "https://files.pythonhosted.org/packages/08/8b/10d3bb546f66ea9831860e6cf4965624759dc41c25b2dc13df1bc86802fa/gpfy-0.7.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1bfefe9aa587da144a57c0a775f933507cbef83743c010d3fc29ee4c571e00de",
"md5": "f804f416e6830de5750e7ea247fafd78",
"sha256": "821a6d1c08c61f9ab29c8d53a480cfb5b2f3836fecc621d6565d0002055e93ab"
},
"downloads": -1,
"filename": "gpfy-0.7.0.tar.gz",
"has_sig": false,
"md5_digest": "f804f416e6830de5750e7ea247fafd78",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.14,>=3.11",
"size": 2921092,
"upload_time": "2025-08-24T15:23:37",
"upload_time_iso_8601": "2025-08-24T15:23:37.181905Z",
"url": "https://files.pythonhosted.org/packages/1b/fe/fe9aa587da144a57c0a775f933507cbef83743c010d3fc29ee4c571e00de/gpfy-0.7.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-24 15:23:37",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "gpfy"
}