[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# GPT4o
Community Open Source Implementation of GPT4o in PyTorch
## Install
# Architecture
- TikToken Tokenzier: We know fursure the tokenizer. [Which is here](https://github.com/openai/tiktoken)
- Model understands Images and Audio Natively. There are 2 approaches, process them natively or use encoders for each. I think here they're using encoders like whisper and vit for simplicity and brevity.
- Using DALLE3 as the output head to generate images
- Tokens to denote when to generate an image or audio
- Whisper output head for the audio outputs
-
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/gpt4o",
"name": "gpt4o",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/69/5d/8423537f2ee1002c75f4150881f4290966f33d94dcca67bc82a3ecbc763f/gpt4o-0.0.1.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# GPT4o\nCommunity Open Source Implementation of GPT4o in PyTorch\n\n\n## Install\n\n\n# Architecture\n- TikToken Tokenzier: We know fursure the tokenizer. [Which is here](https://github.com/openai/tiktoken)\n- Model understands Images and Audio Natively. There are 2 approaches, process them natively or use encoders for each. I think here they're using encoders like whisper and vit for simplicity and brevity.\n- Using DALLE3 as the output head to generate images\n- Tokens to denote when to generate an image or audio\n- Whisper output head for the audio outputs\n- \n\n# License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "gpt4o - Pytorch",
"version": "0.0.1",
"project_urls": {
"Documentation": "https://github.com/kyegomez/gpt4o",
"Homepage": "https://github.com/kyegomez/gpt4o",
"Repository": "https://github.com/kyegomez/gpt4o"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1a027e8b342cd05e28f3a689b712c08fd632781b3d6447cf843b9b3841526d9b",
"md5": "a878039532607f456bfba4c79ddc40c2",
"sha256": "39467fd746688ec553d1740be9ffce1eacdd6b0678ebfecec1ec1f17c7c2faa4"
},
"downloads": -1,
"filename": "gpt4o-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a878039532607f456bfba4c79ddc40c2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 3067,
"upload_time": "2024-05-14T20:17:34",
"upload_time_iso_8601": "2024-05-14T20:17:34.678470Z",
"url": "https://files.pythonhosted.org/packages/1a/02/7e8b342cd05e28f3a689b712c08fd632781b3d6447cf843b9b3841526d9b/gpt4o-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "695d8423537f2ee1002c75f4150881f4290966f33d94dcca67bc82a3ecbc763f",
"md5": "f215dbab16534abef634348d40f3dd13",
"sha256": "54fb69e976de3d0cee675098d1ca3e2c0f254eaec5405354d0cb14f425ddcbed"
},
"downloads": -1,
"filename": "gpt4o-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "f215dbab16534abef634348d40f3dd13",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 3060,
"upload_time": "2024-05-14T20:17:36",
"upload_time_iso_8601": "2024-05-14T20:17:36.415363Z",
"url": "https://files.pythonhosted.org/packages/69/5d/8423537f2ee1002c75f4150881f4290966f33d94dcca67bc82a3ecbc763f/gpt4o-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-14 20:17:36",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "gpt4o",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "torch",
"specs": []
},
{
"name": "zetascale",
"specs": []
},
{
"name": "einops",
"specs": []
},
{
"name": "tiktoken",
"specs": []
}
],
"lcname": "gpt4o"
}