Name | gptq JSON |
Version |
0.0.3
JSON |
| download |
home_page | |
Summary | GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers |
upload_time | 2023-03-23 06:48:51 |
maintainer | |
docs_url | None |
author | Juncong Moo |
requires_python | |
license | Apache 2.0 |
keywords |
gptq
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# 🔮 GPTQ - Accurate Post-Training Compression for Generative Pretrained Transformers
> This repo is a extended and polished version of the original code for the paper [GPTQ: Accurate Post-training Compression for Generative Pretrained Transformers](https://arxiv.org/abs/2210.17323).
## 🔥 SOTA on LLM PTQ
* An efficient implementation of the GPTQ algorithm
* 2/3/4/8-bit quantized matrix full-precision vector product CUDA kernel
* Bug fix for old consumer-grade GPU
![](https://images.deepai.org/converted-papers/2210.17323/x3.png)
## 📥 Installation
```bash
pip install gptq
```
### 🛟 Install PyTorch
`gptq` requires PyTorch and GPU, and installing PyTorch with CUDA is tricky. To install PyTorch correctly, the following steps are recommended:
- run `nvcc --version` to get the version. For example, the following result means we have cuda compiler version 116
```
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Tue_Mar__8_18:18:20_PST_2022
Cuda compilation tools, release 11.6, V11.6.124
Build cuda_11.6.r11.6/compiler.31057947_0
```
- run `pip install light-the-torch` to install ltt
- run `ltt install --pytorch-computation-backend=cu116 torch torchvision torchaudio` to install the torch suite. Please replace the `116` according to your environment!
## TODO
- GPTQ with CNN
----
Algorithm credits go to [IST Austria Distributed Algorithms and Systems Lab](https://ist.ac.at/en/research/alistarh-group)
Raw data
{
"_id": null,
"home_page": "",
"name": "gptq",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "gptq",
"author": "Juncong Moo",
"author_email": "<juncongmoo@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/25/06/2e8e087ec1572fca200c591442ed92c4df7ac8a854ecdf32a7b8065ce14d/gptq-0.0.3.tar.gz",
"platform": null,
"description": "# \ud83d\udd2e GPTQ - Accurate Post-Training Compression for Generative Pretrained Transformers\n\n> This repo is a extended and polished version of the original code for the paper [GPTQ: Accurate Post-training Compression for Generative Pretrained Transformers](https://arxiv.org/abs/2210.17323).\n\n\n\n## \ud83d\udd25 SOTA on LLM PTQ\n\n* An efficient implementation of the GPTQ algorithm\n* 2/3/4/8-bit quantized matrix full-precision vector product CUDA kernel\n* Bug fix for old consumer-grade GPU\n\n\n![](https://images.deepai.org/converted-papers/2210.17323/x3.png)\n\n\n## \ud83d\udce5 Installation\n\n```bash\npip install gptq\n```\n\n\n### \ud83d\udedf Install PyTorch\n\n`gptq` requires PyTorch and GPU, and installing PyTorch with CUDA is tricky. To install PyTorch correctly, the following steps are recommended:\n\n- run `nvcc --version` to get the version. For example, the following result means we have cuda compiler version 116\n\n```\nnvcc: NVIDIA (R) Cuda compiler driver\nCopyright (c) 2005-2022 NVIDIA Corporation\nBuilt on Tue_Mar__8_18:18:20_PST_2022\nCuda compilation tools, release 11.6, V11.6.124\nBuild cuda_11.6.r11.6/compiler.31057947_0\n```\n- run `pip install light-the-torch` to install ltt\n- run `ltt install --pytorch-computation-backend=cu116 torch torchvision torchaudio` to install the torch suite. Please replace the `116` according to your environment!\n\n## TODO\n\n- GPTQ with CNN\n\n----\n\nAlgorithm credits go to [IST Austria Distributed Algorithms and Systems Lab](https://ist.ac.at/en/research/alistarh-group)\n\n\n\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers",
"version": "0.0.3",
"split_keywords": [
"gptq"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "25062e8e087ec1572fca200c591442ed92c4df7ac8a854ecdf32a7b8065ce14d",
"md5": "e36064eeaae8f9c0edb7864648f58317",
"sha256": "05121652e59fd5cc9c6cf9530bb999bb4d843fdbbe81ee532e06c6f8023b812f"
},
"downloads": -1,
"filename": "gptq-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "e36064eeaae8f9c0edb7864648f58317",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 21430,
"upload_time": "2023-03-23T06:48:51",
"upload_time_iso_8601": "2023-03-23T06:48:51.069411Z",
"url": "https://files.pythonhosted.org/packages/25/06/2e8e087ec1572fca200c591442ed92c4df7ac8a854ecdf32a7b8065ce14d/gptq-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-23 06:48:51",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "gptq"
}