gpyconform


Namegpyconform JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/harrisp/GPyConform
SummaryExtends GPyTorch with Gaussian Process Regression Conformal Prediction
upload_time2024-12-09 12:31:26
maintainerNone
docs_urlNone
authorHarris Papadopoulos
requires_python>=3.8
licenseNone
keywords gaussian process regression conformal prediction prediction regions prediction intervals uncertainty quantification coverage guarantee normalized nonconformity
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GPyConform

[![Python Version](https://img.shields.io/badge/Python-3.8+-orange.svg?logo=python&logoColor=white)](https://www.python.org/downloads/)
[![PyPI Version](https://img.shields.io/pypi/v/gpyconform.svg)](https://pypi.org/project/gpyconform)
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/gpyconform.svg)](https://anaconda.org/conda-forge/gpyconform)
[![GitHub (Pre-)Release Date](https://img.shields.io/github/release-date-pre/harrisp/gpyconform)](https://github.com/harrisp/gpyconform/blob/master/CHANGELOG.md)
[![Documentation Status](https://readthedocs.org/projects/gpyconform/badge/?version=latest)](https://gpyconform.readthedocs.io/en/latest/?badge=latest)
[![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](https://github.com/harrisp/gpyconform/blob/master/LICENSE.txt)
[![Downloads](https://static.pepy.tech/badge/gpyconform)](https://pepy.tech/project/gpyconform)


**GPyConform** extends the [GPyTorch](https://gpytorch.ai) library by implementing (Full) Conformal Prediction for Gaussian Process Regression based on the approach described in [1]. Designed to work seamlessly with Exact Gaussian Process (GP) models, GPyConform enhances GPyTorch by introducing the capability to generate and evaluate both 'symmetric' and 'asymmetric' Conformal Prediction Intervals.

## Key Features
- **Provides Provably Valid Prediction Intervals**: Provides Prediction Intervals with guaranteed coverage under minimal assumptions (data exchangeability).
- **Full Utilization of GPyTorch**: Leverages the robust and efficient GP modeling capabilities of GPyTorch.
- **Supports Both Symmetric and Asymmetric Prediction Intervals**: Implements both the symmetric and asymmetric Full Conformal Prediction approaches for constructing Prediction Intervals.

### Note
Currently, GPyConform is tailored specifically for Exact GP models combined with any covariance function that employs an exact prediction strategy.

## Documentation

For detailed documentation and usage examples, see [GPyConform Documentation](https://gpyconform.readthedocs.io).

## Installation

From [PyPI](https://pypi.org/project/gpyconform/)

```bash
pip install gpyconform
```

From [conda-forge](https://anaconda.org/conda-forge/gpyconform)

```bash
conda install conda-forge::gpyconform
```

## Citing GPyConform

If you use `GPyConform` for a scientific publication, you are kindly requested to cite the following paper:

Harris Papadopoulos. "Guaranteed Coverage Prediction Intervals with Gaussian Process Regression", in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 46, no. 12, pp. 9072-9083, Dec. 2024. DOI: [10.1109/TPAMI.2024.3418214](https://doi.org/10.1109/TPAMI.2024.3418214).
([arXiv version](https://arxiv.org/abs/2310.15641))

Bibtex entry:

```bibtex
@ARTICLE{gprcp,
  author={Papadopoulos, Harris},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={Guaranteed Coverage Prediction Intervals with Gaussian Process Regression}, 
  year={2024},
  volume={46},
  number={12},
  pages={9072-9083},
  doi={10.1109/TPAMI.2024.3418214}
}
```

## References

<a id="1">[1]</a> Harris Papadopoulos. "Guaranteed Coverage Prediction Intervals with Gaussian Process Regression", in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 46, no. 12, pp. 9072-9083, Dec. 2024. DOI: [10.1109/TPAMI.2024.3418214](https://doi.org/10.1109/TPAMI.2024.3418214). 
([arXiv version](https://arxiv.org/abs/2310.15641))

<a id="2">[2]</a> Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random World*, 2nd Ed. Springer, 2023. DOI: [10.1007/978-3-031-06649-8](https://doi.org/10.1007/978-3-031-06649-8).


- - -

Author: Harris Papadopoulos (h.papadopoulos@frederick.ac.cy) / 
Copyright 2024 Harris Papadopoulos / 
License: BSD 3 clause

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/harrisp/GPyConform",
    "name": "gpyconform",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "Gaussian Process Regression, Conformal Prediction, Prediction Regions, Prediction Intervals, Uncertainty Quantification, Coverage Guarantee, Normalized Nonconformity",
    "author": "Harris Papadopoulos",
    "author_email": "h.papadopoulos@frederick.ac.cy",
    "download_url": "https://files.pythonhosted.org/packages/67/38/6b2dea2c91cb015d2f0a7cd02f3fd06d41d9ab1455b072c36ae6d549919e/gpyconform-0.1.1.tar.gz",
    "platform": null,
    "description": "# GPyConform\r\n\r\n[![Python Version](https://img.shields.io/badge/Python-3.8+-orange.svg?logo=python&logoColor=white)](https://www.python.org/downloads/)\r\n[![PyPI Version](https://img.shields.io/pypi/v/gpyconform.svg)](https://pypi.org/project/gpyconform)\r\n[![Conda Version](https://img.shields.io/conda/vn/conda-forge/gpyconform.svg)](https://anaconda.org/conda-forge/gpyconform)\r\n[![GitHub (Pre-)Release Date](https://img.shields.io/github/release-date-pre/harrisp/gpyconform)](https://github.com/harrisp/gpyconform/blob/master/CHANGELOG.md)\r\n[![Documentation Status](https://readthedocs.org/projects/gpyconform/badge/?version=latest)](https://gpyconform.readthedocs.io/en/latest/?badge=latest)\r\n[![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](https://github.com/harrisp/gpyconform/blob/master/LICENSE.txt)\r\n[![Downloads](https://static.pepy.tech/badge/gpyconform)](https://pepy.tech/project/gpyconform)\r\n\r\n\r\n**GPyConform** extends the [GPyTorch](https://gpytorch.ai) library by implementing (Full) Conformal Prediction for Gaussian Process Regression based on the approach described in [1]. Designed to work seamlessly with Exact Gaussian Process (GP) models, GPyConform enhances GPyTorch by introducing the capability to generate and evaluate both 'symmetric' and 'asymmetric' Conformal Prediction Intervals.\r\n\r\n## Key Features\r\n- **Provides Provably Valid Prediction Intervals**: Provides Prediction Intervals with guaranteed coverage under minimal assumptions (data exchangeability).\r\n- **Full Utilization of GPyTorch**: Leverages the robust and efficient GP modeling capabilities of GPyTorch.\r\n- **Supports Both Symmetric and Asymmetric Prediction Intervals**: Implements both the symmetric and asymmetric Full Conformal Prediction approaches for constructing Prediction Intervals.\r\n\r\n### Note\r\nCurrently, GPyConform is tailored specifically for Exact GP models combined with any covariance function that employs an exact prediction strategy.\r\n\r\n## Documentation\r\n\r\nFor detailed documentation and usage examples, see [GPyConform Documentation](https://gpyconform.readthedocs.io).\r\n\r\n## Installation\r\n\r\nFrom [PyPI](https://pypi.org/project/gpyconform/)\r\n\r\n```bash\r\npip install gpyconform\r\n```\r\n\r\nFrom [conda-forge](https://anaconda.org/conda-forge/gpyconform)\r\n\r\n```bash\r\nconda install conda-forge::gpyconform\r\n```\r\n\r\n## Citing GPyConform\r\n\r\nIf you use `GPyConform` for a scientific publication, you are kindly requested to cite the following paper:\r\n\r\nHarris Papadopoulos. \"Guaranteed Coverage Prediction Intervals with Gaussian Process Regression\", in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 46, no. 12, pp. 9072-9083, Dec. 2024. DOI: [10.1109/TPAMI.2024.3418214](https://doi.org/10.1109/TPAMI.2024.3418214).\r\n([arXiv version](https://arxiv.org/abs/2310.15641))\r\n\r\nBibtex entry:\r\n\r\n```bibtex\r\n@ARTICLE{gprcp,\r\n  author={Papadopoulos, Harris},\r\n  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, \r\n  title={Guaranteed Coverage Prediction Intervals with Gaussian Process Regression}, \r\n  year={2024},\r\n  volume={46},\r\n  number={12},\r\n  pages={9072-9083},\r\n  doi={10.1109/TPAMI.2024.3418214}\r\n}\r\n```\r\n\r\n## References\r\n\r\n<a id=\"1\">[1]</a> Harris Papadopoulos. \"Guaranteed Coverage Prediction Intervals with Gaussian Process Regression\", in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 46, no. 12, pp. 9072-9083, Dec. 2024. DOI: [10.1109/TPAMI.2024.3418214](https://doi.org/10.1109/TPAMI.2024.3418214). \r\n([arXiv version](https://arxiv.org/abs/2310.15641))\r\n\r\n<a id=\"2\">[2]</a> Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random World*, 2nd Ed. Springer, 2023. DOI: [10.1007/978-3-031-06649-8](https://doi.org/10.1007/978-3-031-06649-8).\r\n\r\n\r\n- - -\r\n\r\nAuthor: Harris Papadopoulos (h.papadopoulos@frederick.ac.cy) / \r\nCopyright 2024 Harris Papadopoulos / \r\nLicense: BSD 3 clause\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Extends GPyTorch with Gaussian Process Regression Conformal Prediction",
    "version": "0.1.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/harrisp/GPyConform/issues",
        "Documentation": "https://gpyconform.readthedocs.io",
        "Homepage": "https://github.com/harrisp/GPyConform"
    },
    "split_keywords": [
        "gaussian process regression",
        " conformal prediction",
        " prediction regions",
        " prediction intervals",
        " uncertainty quantification",
        " coverage guarantee",
        " normalized nonconformity"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7c35b94632d96eae2d798d4cd683d6aa4ec5753885a7f17cb838742697b53d35",
                "md5": "fb33913370495661f26973557b0f25a7",
                "sha256": "fa7a5e372cd309376735b53509731b0b509f60b6762529dbb5d07cd5a751edd3"
            },
            "downloads": -1,
            "filename": "gpyconform-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fb33913370495661f26973557b0f25a7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 12804,
            "upload_time": "2024-12-09T12:31:25",
            "upload_time_iso_8601": "2024-12-09T12:31:25.181918Z",
            "url": "https://files.pythonhosted.org/packages/7c/35/b94632d96eae2d798d4cd683d6aa4ec5753885a7f17cb838742697b53d35/gpyconform-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "67386b2dea2c91cb015d2f0a7cd02f3fd06d41d9ab1455b072c36ae6d549919e",
                "md5": "03257b6c70fdcf37b1515f5dc8c43964",
                "sha256": "1d585f639a294c3123353f171801d0bdc328c115ad6fd6f66e95ea5ef4f51ceb"
            },
            "downloads": -1,
            "filename": "gpyconform-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "03257b6c70fdcf37b1515f5dc8c43964",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 13198,
            "upload_time": "2024-12-09T12:31:26",
            "upload_time_iso_8601": "2024-12-09T12:31:26.754542Z",
            "url": "https://files.pythonhosted.org/packages/67/38/6b2dea2c91cb015d2f0a7cd02f3fd06d41d9ab1455b072c36ae6d549919e/gpyconform-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-09 12:31:26",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "harrisp",
    "github_project": "GPyConform",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "gpyconform"
}
        
Elapsed time: 1.15709s