# gradio_foliumtest
Create a map with folium and display it on the web with Gradio!
## Example usage
```python
import gradio as gr
from gradio_foliumtest import FoliumTest
from typing import Literal
from folium import Map
LAT_LONG_MAP = {
"New York City": (40.7128, -74.0060),
"London": (51.5074, -0.1278),
"San Francisco": (37.7749, -122.4194),
"Tokyo": (35.6762, 139.6503),
"Miami": (25.7617, -80.1918),
}
def get_city(city: Literal["New York City", "London", "San Francisco", "Tokyo", "Miami"]):
city = city or "Miami"
return Map(location=LAT_LONG_MAP[city], zoom_start=12)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
city = gr.Radio(choices=["New York City", "London", "San Francisco", "Tokyo", "Miami"],
label="City")
with gr.Column():
map_ = FoliumTest(label="Foo")
city.change(get_city, city, map_)
demo.launch()
```
Raw data
{
"_id": null,
"home_page": "",
"name": "gradio-foliumtest",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "gradio,gradio custom component,gradio-template-Fallback,machine learning,reproducibility,visualization",
"author": "",
"author_email": "YOUR NAME <YOUREMAIL@domain.com>",
"download_url": "https://files.pythonhosted.org/packages/3b/85/a813a4f65d064c9354b2a7654a4da3ebe6d23caed2f99db4c2f15aa8156f/gradio_foliumtest-0.0.2.tar.gz",
"platform": null,
"description": "\n# gradio_foliumtest\n\nCreate a map with folium and display it on the web with Gradio! \n\n## Example usage\n\n```python\nimport gradio as gr\nfrom gradio_foliumtest import FoliumTest\nfrom typing import Literal\nfrom folium import Map\n\n\nLAT_LONG_MAP = {\n \"New York City\": (40.7128, -74.0060),\n \"London\": (51.5074, -0.1278),\n \"San Francisco\": (37.7749, -122.4194),\n \"Tokyo\": (35.6762, 139.6503),\n \"Miami\": (25.7617, -80.1918),\n}\n\ndef get_city(city: Literal[\"New York City\", \"London\", \"San Francisco\", \"Tokyo\", \"Miami\"]):\n city = city or \"Miami\"\n return Map(location=LAT_LONG_MAP[city], zoom_start=12)\n\nwith gr.Blocks() as demo:\n with gr.Row():\n with gr.Column():\n city = gr.Radio(choices=[\"New York City\", \"London\", \"San Francisco\", \"Tokyo\", \"Miami\"],\n label=\"City\")\n with gr.Column():\n map_ = FoliumTest(label=\"Foo\")\n city.change(get_city, city, map_)\n\ndemo.launch()\n```\n",
"bugtrack_url": null,
"license": "",
"summary": "Python library for easily interacting with trained machine learning models",
"version": "0.0.2",
"project_urls": null,
"split_keywords": [
"gradio",
"gradio custom component",
"gradio-template-fallback",
"machine learning",
"reproducibility",
"visualization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "dae029917632627ce5fe33ecd0e2da75f0be04be67eb7d83ffb11aa7855a9add",
"md5": "53b753483a826e0c02bcd4cd3deaac32",
"sha256": "5e4e131ec05befb2064310f3b4ec2eab963ef8e5983f1b353f4e46970f7b6405"
},
"downloads": -1,
"filename": "gradio_foliumtest-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "53b753483a826e0c02bcd4cd3deaac32",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 23428,
"upload_time": "2023-10-31T16:42:26",
"upload_time_iso_8601": "2023-10-31T16:42:26.314726Z",
"url": "https://files.pythonhosted.org/packages/da/e0/29917632627ce5fe33ecd0e2da75f0be04be67eb7d83ffb11aa7855a9add/gradio_foliumtest-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3b85a813a4f65d064c9354b2a7654a4da3ebe6d23caed2f99db4c2f15aa8156f",
"md5": "1bfe26b0c6274ede2c76506ef04aba9e",
"sha256": "220c139a751dac55e65475374d387cd4676d016e2994e0f6351108d77835a725"
},
"downloads": -1,
"filename": "gradio_foliumtest-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "1bfe26b0c6274ede2c76506ef04aba9e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 32564,
"upload_time": "2023-10-31T16:42:27",
"upload_time_iso_8601": "2023-10-31T16:42:27.727156Z",
"url": "https://files.pythonhosted.org/packages/3b/85/a813a4f65d064c9354b2a7654a4da3ebe6d23caed2f99db4c2f15aa8156f/gradio_foliumtest-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-31 16:42:27",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "gradio-foliumtest"
}