---
tags: [gradio-custom-component, Code]
title: gradio_livelog
short_description: A Live Log component for Gradio Interface
colorFrom: blue
colorTo: yellow
sdk: gradio
pinned: false
app_file: space.py
---
# `gradio_livelog`
<a href="https://pypi.org/project/gradio_livelog/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_livelog"></a>
A Live Log Component for Gradio Interface
## Installation
```bash
pip install gradio_livelog
```
## Usage
```python
import spaces
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import threading
import time
import logging
import random
import numpy as np
from typing import Callable
from gradio_livelog import LiveLog
from gradio_livelog.utils import ProgressTracker, livelog
# --- 1. SETUP ---
MODEL_ID = "SG161222/RealVisXL_V5.0_Lightning"
MAX_SEED = np.iinfo(np.int32).max
def configure_logging():
"""
Configure logging for the application with two separate loggers:
- 'logging_app' for the LiveLog Feature Demo tab.
- 'diffusion_app' for the Diffusion Pipeline Integration tab.
Each logger outputs to the console with DEBUG level.
"""
#logging.basicConfig(level=logging.DEBUG)
# Logger for LiveLog Feature Demo
app_logger = logging.getLogger("logging_app")
app_logger.setLevel(logging.INFO)
if not app_logger.handlers:
console_handler = logging.StreamHandler()
#console_handler.flush = sys.stderr.flush
app_logger.addHandler(console_handler)
# Logger for Diffusion Pipeline Integration
diffusion_logger = logging.getLogger("diffusion_app")
diffusion_logger.setLevel(logging.INFO)
if not diffusion_logger.handlers:
console_handler = logging.StreamHandler()
#console_handler.flush = sys.stderr.flush
diffusion_logger.addHandler(console_handler)
# --- 2. BUSINESS LOGIC FUNCTIONS ---
def _run_process_logic(run_error_case: bool, **kwargs):
"""
Simulate a process with multiple steps, logging progress and status updates to the LiveLog component.
Used in the LiveLog Feature Demo tab to demonstrate logging and progress tracking.
Args:
run_error_case (bool): If True, simulates an error at step 25 to test error handling.
**kwargs: Additional arguments including:
- tracker (ProgressTracker): Tracker for progress updates.
- log_callback (Callable): Callback to send logs and progress to LiveLog.
- total_steps (int): Total number of steps for the process.
- log_name (str, optional): Logger name, defaults to 'logging_app'.
Raises:
RuntimeError: If run_error_case is True, raises an error at step 25.
"""
tracker: ProgressTracker = kwargs['tracker']
log_callback: Callable = kwargs['log_callback']
total_steps = kwargs.get('total_steps', tracker.total)
logger = logging.getLogger(kwargs.get('log_name', 'logging_app'))
logger.info(f"Starting simulated process with {total_steps} steps...")
log_callback(advance=0, log_content=f"Starting simulated process with {total_steps} steps...")
time.sleep(0.01)
logger.info("Initializing system parameters...")
logger.info("Verifying asset integrity (check 1/3)...")
logger.info("Verifying asset integrity (check 2/3)...")
logger.info("Verifying asset integrity (check 3/3)...")
logger.info("Checking for required dependencies...")
logger.info(" - Dependency 'numpy' found.")
logger.info(" - Dependency 'torch' found.")
logger.info("Pre-allocating memory buffer (1024 MB)...")
logger.info("Initialization complete. Starting main loop.")
log_callback(log_content="Simulating a process...")
time.sleep(0.01)
sub_tasks = ["Reading data block...", "Applying filter algorithm...", "Normalizing values...", "Checking for anomalies..."]
update_interval = 2 # Update every 2 steps to reduce overhead
for i in range(total_steps):
time.sleep(0.03)
current_step = i + 1
logger.info(f"--- Begin Step {current_step}/{total_steps} ---")
for task in sub_tasks:
logger.info(f" - {task} (completed)")
if current_step == 10:
logger.warning(f"Low disk space warning at step {current_step}.")
elif current_step == 30:
logger.log(logging.INFO + 5, f"Asset pack loaded at step {current_step}.")
elif current_step == 40:
logger.critical(f"Checksum mismatch at step {current_step}.")
logger.info(f"--- End Step {current_step}/{total_steps} ---")
if run_error_case and current_step == 25:
logger.error("A fatal simulation error occurred! Aborting.")
log_callback(status="error", log_content="A fatal simulation error occurred! Aborting.")
time.sleep(0.01)
raise RuntimeError("A fatal simulation error occurred! Aborting.")
if current_step % update_interval == 0 or current_step == total_steps:
log_callback(advance=min(update_interval, total_steps - (current_step - update_interval)), log_content=f"Processing step {current_step}/{total_steps}")
time.sleep(0.01)
logger.log(logging.INFO + 5, "Process completed successfully!")
log_callback(status="success", log_content="Process completed successfully!")
time.sleep(0.01)
logger.info("Performing final integrity check.")
logger.info("Saving results to 'output.log'...")
logger.info("Cleaning up temporary files...")
logger.info("Releasing memory buffer.")
logger.info("Disconnecting from all services.")
logger.info("Process finished.")
def _run_diffusion_logic(prompt: str, **kwargs):
"""
Run a Stable Diffusion pipeline to generate an image based on a prompt, logging progress and status
to the LiveLog component. Used in the Diffusion Pipeline Integration tab.
Args:
prompt (str): The text prompt for image generation.
**kwargs: Additional arguments including:
- log_callback (Callable): Callback to send logs and progress to LiveLog.
- progress_bar_handler: Handler for tqdm progress updates.
- total_steps (int, optional): Number of diffusion steps, defaults to 10.
- log_name (str, optional): Logger name, defaults to 'diffusion_app'.
Returns:
List: Generated images from the diffusion pipeline.
Raises:
Exception: If an error occurs during image generation, logged and re-raised.
"""
log_callback = kwargs.get('log_callback')
progress_bar_handler = kwargs.get('progress_bar_handler')
total_steps = kwargs.get('total_steps', 10)
logger = logging.getLogger(kwargs.get('log_name', 'diffusion_app'))
try:
pipe = load_pipeline()
pipe.set_progress_bar_config(file=progress_bar_handler, disable=False, ncols=100, dynamic_ncols=True, ascii=" █")
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
prompt_style = f"hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic"
negative_prompt_style = "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly"
logger.info(f"Using seed: {seed}")
log_callback(log_content=f"Using seed: {seed}")
time.sleep(0.03)
logger.info("Starting diffusion process...")
log_callback(log_content="Starting diffusion process...")
time.sleep(0.03)
def progress_callback(pipe_instance, step, timestep, callback_kwargs):
"""Callback for diffusion pipeline to log progress at each step."""
if log_callback:
log_callback(advance=1, log_content=f"Diffusion step {step + 1}/{total_steps}")
time.sleep(0.03)
return callback_kwargs
images = pipe(
prompt=prompt_style,
negative_prompt=negative_prompt_style,
width=1024,
height=1024,
guidance_scale=3.0,
num_inference_steps=total_steps,
generator=generator,
callback_on_step_end=progress_callback
).images
logger.log(logging.INFO + 5, "Image generated successfully!")
log_callback(status="success", final_payload=images, log_content="Image generated successfully!")
time.sleep(0.03)
return images
except Exception as e:
logger.error(f"Error in diffusion logic: {e}, process aborted!")
log_callback(status="error", log_content=f"Error: {str(e)}")
time.sleep(0.03)
raise e
# --- 3. PIPELINE LOADING ---
diffusion_pipeline = None
pipeline_lock = threading.Lock()
def load_pipeline():
"""
Load and cache the Stable Diffusion XL pipeline for image generation, ensuring thread-safe initialization.
Returns:
StableDiffusionXLPipeline: The loaded pipeline, ready for image generation.
"""
global diffusion_pipeline
with pipeline_lock:
if diffusion_pipeline is None:
print("Loading Stable Diffusion model for the first time...")
pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False, device_map="cuda"
)
pipe.enable_vae_tiling()
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
diffusion_pipeline = pipe
print("Model loaded successfully!")
return diffusion_pipeline
# --- 4. GRADIO UI ---
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.HTML("<h1><center>LiveLog Component Showcase</center></h1>")
with gr.Tabs():
with gr.TabItem("LiveLog Feature Demo"):
"""Interactive tab to test LiveLog features with customizable properties and simulated processes."""
gr.Markdown("### Test all features of the LiveLog component interactively.")
with gr.Row():
with gr.Column(scale=3):
feature_logger = LiveLog(
label="Process Output",
line_numbers=True,
height=450,
background_color="#000000",
display_mode="full"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Component Properties")
display_mode_radio = gr.Radio(["full", "log", "progress"], label="Display Mode", value="full")
rate_unit = gr.Radio(["it/s", "s/it"], label="Progress rate unit", value="it/s")
bg_color_picker = gr.ColorPicker(label="Background Color", value="#000000")
line_numbers_checkbox = gr.Checkbox(label="Show Line Numbers", value=True)
autoscroll_checkbox = gr.Checkbox(label="Autoscroll", value=True)
disable_console_checkbox = gr.Checkbox(label="Disable Python Console Output", value=False)
with gr.Group():
gr.Markdown("### Simulation Controls")
start_btn = gr.Button("Run Success Case", variant="primary")
error_btn = gr.Button("Run Error Case")
@livelog(
log_names=["logging_app"],
outputs_for_yield=[feature_logger, start_btn, error_btn],
log_output_index=0,
interactive_outputs_indices=[1, 2],
result_output_index=0,
use_tracker=True,
tracker_mode="manual",
tracker_total_arg_name="total_steps",
tracker_description="Simulating a process...",
tracker_rate_unit="it/s",
disable_console_logs="disable_console",
tracker_total_steps=100
)
def run_success_case(disable_console: bool, rate_unit: str, total_steps: int = 100, **kwargs):
"""
Run a simulated process that completes successfully, logging progress and status to feature_logger.
Args:
disable_console (bool): If True, suppress console logs.
rate_unit (str): Unit for progress rate ('it/s' or 's/it').
total_steps (int, optional): Total steps for the process. Defaults to 100.
**kwargs: Additional arguments passed to _run_process_logic.
"""
kwargs["total_steps"] = total_steps
kwargs["rate_unit"] = rate_unit
kwargs["disable_console"] = disable_console
kwargs["log_name"] = "logging_app"
_run_process_logic(run_error_case=False, **kwargs)
@livelog(
log_names=["logging_app"],
outputs_for_yield=[feature_logger, start_btn, error_btn],
log_output_index=0,
interactive_outputs_indices=[1, 2],
result_output_index=0,
use_tracker=True,
tracker_mode="manual",
tracker_total_arg_name="total_steps",
tracker_description="Simulating an error...",
tracker_rate_unit="it/s",
disable_console_logs="disable_console",
tracker_total_steps=100
)
def run_error_case(disable_console: bool, rate_unit: str, total_steps: int = 100, **kwargs):
"""
Run a simulated process that triggers an error, logging progress and error to feature_logger.
Args:
disable_console (bool): If True, suppress console logs.
rate_unit (str): Unit for progress rate ('it/s' or 's/it').
total_steps (int, optional): Total steps for the process. Defaults to 100.
**kwargs: Additional arguments passed to _run_process_logic.
"""
kwargs["total_steps"] = total_steps
kwargs["rate_unit"] = rate_unit
kwargs["disable_console"] = disable_console
kwargs["log_name"] = "logging_app"
_run_process_logic(run_error_case=True, **kwargs)
start_btn.click(
fn=run_success_case,
inputs=[disable_console_checkbox, rate_unit],
outputs=[feature_logger, start_btn, error_btn]
)
error_btn.click(
fn=run_error_case,
inputs=[disable_console_checkbox, rate_unit],
outputs=[feature_logger, start_btn, error_btn]
)
feature_logger.clear(fn=lambda: None, outputs=[feature_logger])
controls = [display_mode_radio, bg_color_picker, line_numbers_checkbox, autoscroll_checkbox]
def update_livelog_properties(mode, color, lines, scroll):
"""Update LiveLog properties dynamically based on user input."""
return gr.update(display_mode=mode, background_color=color, line_numbers=lines, autoscroll=scroll)
for control in controls:
control.change(fn=update_livelog_properties, inputs=controls, outputs=feature_logger)
with gr.TabItem("Diffusion Pipeline Integration"):
"""Tab to monitor a real image generation process using Stable Diffusion with LiveLog."""
gr.Markdown("### Use `LiveLog` to monitor a real image generation process.")
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
prompt = gr.Textbox(label="Enter your prompt", show_label=False, placeholder="A cinematic photo of a robot in a floral garden...", scale=8, container=False)
run_button = gr.Button("Generate", scale=1, variant="primary")
livelog_viewer = LiveLog(
label="Process Monitor",
height=350,
display_mode="full",
line_numbers=False
)
with gr.Column(scale=2):
result_gallery = gr.Gallery(label="Result", columns=1, show_label=False, height=500, min_width=768, preview=True)
@spaces.GPU(duration=60)
@livelog(
log_names=["diffusion_app"],
outputs_for_yield=[result_gallery, livelog_viewer, run_button],
log_output_index=1,
interactive_outputs_indices=[2],
result_output_index=0,
use_tracker=True,
tracker_mode="auto",
tracker_total_arg_name="total_steps",
tracker_description="Diffusion Steps",
tracker_rate_unit="it/s",
disable_console_logs="disable_console",
tracker_total_steps=10
)
def generate(prompt: str, total_steps: int = 10, disable_console: bool = False, rate_unit: str = 'it/s', **kwargs):
"""
Generate an image using Stable Diffusion, logging progress and status to livelog_viewer.
Args:
prompt (str): Text prompt for image generation.
total_steps (int, optional): Number of diffusion steps. Defaults to 10.
disable_console (bool): If True, suppress console logs.
rate_unit (str): Unit for progress rate ('it/s' or 's/it').
**kwargs: Additional arguments passed to _run_diffusion_logic.
Returns:
List: Generated images.
"""
kwargs["total_steps"] = total_steps
kwargs["rate_unit"] = rate_unit
kwargs["disable_console"] = disable_console
kwargs["log_name"] = "diffusion_app"
return _run_diffusion_logic(prompt, **kwargs)
run_button.click(
fn=generate,
inputs=[prompt, gr.State(value=10), disable_console_checkbox, rate_unit],
outputs=[result_gallery, livelog_viewer, run_button]
)
prompt.submit(
fn=generate,
inputs=[prompt, gr.State(value=10), disable_console_checkbox, rate_unit],
outputs=[result_gallery, livelog_viewer, run_button]
)
livelog_viewer.clear(fn=lambda: None, outputs=[livelog_viewer])
if __name__ == "__main__":
configure_logging()
demo.queue(max_size=50).launch(debug=True)
```
## `LiveLog`
### Initialization
<table>
<thead>
<tr>
<th align="left">name</th>
<th align="left" style="width: 25%;">type</th>
<th align="left">default</th>
<th align="left">description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left"><code>value</code></td>
<td align="left" style="width: 25%;">
```python
typing.Union[
typing.List[typing.Dict[str, typing.Any]],
typing.Callable,
NoneType,
][
typing.List[typing.Dict[str, typing.Any]][
typing.Dict[str, typing.Any][str, Any]
],
Callable,
None,
]
```
</td>
<td align="left"><code>None</code></td>
<td align="left">The initial value, a list of log/progress dictionaries. Can be a callable.</td>
</tr>
<tr>
<td align="left"><code>label</code></td>
<td align="left" style="width: 25%;">
```python
str | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">The component label.</td>
</tr>
<tr>
<td align="left"><code>every</code></td>
<td align="left" style="width: 25%;">
```python
float | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">If `value` is a callable, run the function 'every' seconds.</td>
</tr>
<tr>
<td align="left"><code>height</code></td>
<td align="left" style="width: 25%;">
```python
int | str
```
</td>
<td align="left"><code>400</code></td>
<td align="left">The height of the log panel in pixels or CSS units.</td>
</tr>
<tr>
<td align="left"><code>autoscroll</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">If True, the panel will automatically scroll to the bottom on new logs.</td>
</tr>
<tr>
<td align="left"><code>line_numbers</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>False</code></td>
<td align="left">If True, shows line numbers for logs.</td>
</tr>
<tr>
<td align="left"><code>background_color</code></td>
<td align="left" style="width: 25%;">
```python
str
```
</td>
<td align="left"><code>"#000000"</code></td>
<td align="left">The background color of the log panel as a CSS-valid string.</td>
</tr>
<tr>
<td align="left"><code>display_mode</code></td>
<td align="left" style="width: 25%;">
```python
"full" | "log" | "progress"
```
</td>
<td align="left"><code>"full"</code></td>
<td align="left">"full" (logs and progress), "log" (only logs), or "progress" (only progress bar).</td>
</tr>
<tr>
<td align="left"><code>disable_console</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">If True, logs will not be propagated to the standard Python console.</td>
</tr>
<tr>
<td align="left"><code>show_download_button</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">If True, shows the download button in the header.</td>
</tr>
<tr>
<td align="left"><code>show_copy_button</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">If True, shows the copy button in the header.</td>
</tr>
<tr>
<td align="left"><code>show_clear_button</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">If True, shows the clear button in the header.</td>
</tr>
<tr>
<td align="left"><code>show_label</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">If True, will display label.</td>
</tr>
<tr>
<td align="left"><code>container</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">If True, will place the component in a container.</td>
</tr>
<tr>
<td align="left"><code>scale</code></td>
<td align="left" style="width: 25%;">
```python
int | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">Relative size compared to adjacent Components.</td>
</tr>
<tr>
<td align="left"><code>min_width</code></td>
<td align="left" style="width: 25%;">
```python
int
```
</td>
<td align="left"><code>160</code></td>
<td align="left">Minimum pixel width, will wrap if not sufficient screen space.</td>
</tr>
<tr>
<td align="left"><code>visible</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">If False, the component will be hidden.</td>
</tr>
<tr>
<td align="left"><code>elem_id</code></td>
<td align="left" style="width: 25%;">
```python
str | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">An optional string that is assigned as the id of this component in the HTML DOM.</td>
</tr>
<tr>
<td align="left"><code>elem_classes</code></td>
<td align="left" style="width: 25%;">
```python
list[str] | str | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">An optional string or list of strings assigned as the class of this component.</td>
</tr>
<tr>
<td align="left"><code>render</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">If False, this component will not be rendered.</td>
</tr>
<tr>
<td align="left"><code>key</code></td>
<td align="left" style="width: 25%;">
```python
int | str | tuple[int | str, Ellipsis] | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">A unique key for the component.</td>
</tr>
</tbody></table>
### Events
| name | description |
|:-----|:------------|
| `change` | Triggered when the value of the LiveLog changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input. |
| `clear` | This listener is triggered when the user clears the LiveLog using the clear button for the component. |
### User function
The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).
- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.
The code snippet below is accurate in cases where the component is used as both an input and an output.
- **As output:** Is passed, the preprocessed input data sent to the user's function in the backend.
- **As input:** Should return, the output data received by the component from the user's function in the backend.
```python
def predict(
value: typing.Optional[typing.List[typing.Dict[str, typing.Any]]][
typing.List[typing.Dict[str, typing.Any]][
typing.Dict[str, typing.Any][str, Any]
],
None,
]
) -> typing.Optional[typing.List[typing.Dict[str, typing.Any]]][
typing.List[typing.Dict[str, typing.Any]][
typing.Dict[str, typing.Any][str, Any]
],
None,
]:
return value
```
Raw data
{
"_id": null,
"home_page": null,
"name": "gradio-livelog",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "gradio-custom-component, gradio-template-Code",
"author": null,
"author_email": "Eliseu Silva <elismasilva@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/d6/52/97aa0932ec24ae9024db3d591425a9a6cd58cd58c7647beabb7b06fb630c/gradio_livelog-0.0.9.tar.gz",
"platform": null,
"description": "---\ntags: [gradio-custom-component, Code]\ntitle: gradio_livelog\nshort_description: A Live Log component for Gradio Interface\ncolorFrom: blue\ncolorTo: yellow\nsdk: gradio\npinned: false\napp_file: space.py\n---\n\n# `gradio_livelog`\n<a href=\"https://pypi.org/project/gradio_livelog/\" target=\"_blank\"><img alt=\"PyPI - Version\" src=\"https://img.shields.io/pypi/v/gradio_livelog\"></a> \n\nA Live Log Component for Gradio Interface\n\n## Installation\n\n```bash\npip install gradio_livelog\n```\n\n## Usage\n\n```python\nimport spaces\nimport gradio as gr\nimport torch\nfrom diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler\nimport threading\nimport time\nimport logging\nimport random\nimport numpy as np\nfrom typing import Callable\n\nfrom gradio_livelog import LiveLog\nfrom gradio_livelog.utils import ProgressTracker, livelog\n\n# --- 1. SETUP ---\nMODEL_ID = \"SG161222/RealVisXL_V5.0_Lightning\"\nMAX_SEED = np.iinfo(np.int32).max\n\ndef configure_logging():\n \"\"\"\n Configure logging for the application with two separate loggers:\n - 'logging_app' for the LiveLog Feature Demo tab.\n - 'diffusion_app' for the Diffusion Pipeline Integration tab.\n Each logger outputs to the console with DEBUG level.\n \"\"\"\n \n #logging.basicConfig(level=logging.DEBUG)\n\n # Logger for LiveLog Feature Demo\n app_logger = logging.getLogger(\"logging_app\")\n app_logger.setLevel(logging.INFO)\n if not app_logger.handlers:\n console_handler = logging.StreamHandler()\n #console_handler.flush = sys.stderr.flush\n app_logger.addHandler(console_handler)\n\n # Logger for Diffusion Pipeline Integration\n diffusion_logger = logging.getLogger(\"diffusion_app\")\n diffusion_logger.setLevel(logging.INFO)\n if not diffusion_logger.handlers:\n console_handler = logging.StreamHandler()\n #console_handler.flush = sys.stderr.flush\n diffusion_logger.addHandler(console_handler)\n\n# --- 2. BUSINESS LOGIC FUNCTIONS ---\ndef _run_process_logic(run_error_case: bool, **kwargs):\n \"\"\"\n Simulate a process with multiple steps, logging progress and status updates to the LiveLog component.\n Used in the LiveLog Feature Demo tab to demonstrate logging and progress tracking.\n\n Args:\n run_error_case (bool): If True, simulates an error at step 25 to test error handling.\n **kwargs: Additional arguments including:\n - tracker (ProgressTracker): Tracker for progress updates.\n - log_callback (Callable): Callback to send logs and progress to LiveLog.\n - total_steps (int): Total number of steps for the process.\n - log_name (str, optional): Logger name, defaults to 'logging_app'.\n\n Raises:\n RuntimeError: If run_error_case is True, raises an error at step 25.\n \"\"\"\n tracker: ProgressTracker = kwargs['tracker']\n log_callback: Callable = kwargs['log_callback']\n total_steps = kwargs.get('total_steps', tracker.total)\n logger = logging.getLogger(kwargs.get('log_name', 'logging_app'))\n\n logger.info(f\"Starting simulated process with {total_steps} steps...\")\n log_callback(advance=0, log_content=f\"Starting simulated process with {total_steps} steps...\")\n time.sleep(0.01)\n \n logger.info(\"Initializing system parameters...\")\n logger.info(\"Verifying asset integrity (check 1/3)...\")\n logger.info(\"Verifying asset integrity (check 2/3)...\")\n logger.info(\"Verifying asset integrity (check 3/3)...\")\n logger.info(\"Checking for required dependencies...\")\n logger.info(\" - Dependency 'numpy' found.\")\n logger.info(\" - Dependency 'torch' found.\")\n logger.info(\"Pre-allocating memory buffer (1024 MB)...\")\n logger.info(\"Initialization complete. Starting main loop.\")\n log_callback(log_content=\"Simulating a process...\")\n time.sleep(0.01)\n\n sub_tasks = [\"Reading data block...\", \"Applying filter algorithm...\", \"Normalizing values...\", \"Checking for anomalies...\"]\n\n update_interval = 2 # Update every 2 steps to reduce overhead\n for i in range(total_steps):\n time.sleep(0.03)\n current_step = i + 1\n logger.info(f\"--- Begin Step {current_step}/{total_steps} ---\")\n for task in sub_tasks:\n logger.info(f\" - {task} (completed)\")\n\n if current_step == 10:\n logger.warning(f\"Low disk space warning at step {current_step}.\")\n elif current_step == 30:\n logger.log(logging.INFO + 5, f\"Asset pack loaded at step {current_step}.\")\n elif current_step == 40:\n logger.critical(f\"Checksum mismatch at step {current_step}.\")\n\n logger.info(f\"--- End Step {current_step}/{total_steps} ---\")\n\n if run_error_case and current_step == 25:\n logger.error(\"A fatal simulation error occurred! Aborting.\")\n log_callback(status=\"error\", log_content=\"A fatal simulation error occurred! Aborting.\")\n time.sleep(0.01)\n raise RuntimeError(\"A fatal simulation error occurred! Aborting.\")\n\n if current_step % update_interval == 0 or current_step == total_steps:\n log_callback(advance=min(update_interval, total_steps - (current_step - update_interval)), log_content=f\"Processing step {current_step}/{total_steps}\")\n time.sleep(0.01)\n\n logger.log(logging.INFO + 5, \"Process completed successfully!\")\n log_callback(status=\"success\", log_content=\"Process completed successfully!\")\n time.sleep(0.01)\n logger.info(\"Performing final integrity check.\")\n logger.info(\"Saving results to 'output.log'...\")\n logger.info(\"Cleaning up temporary files...\")\n logger.info(\"Releasing memory buffer.\")\n logger.info(\"Disconnecting from all services.\")\n logger.info(\"Process finished.\")\n\ndef _run_diffusion_logic(prompt: str, **kwargs):\n \"\"\"\n Run a Stable Diffusion pipeline to generate an image based on a prompt, logging progress and status\n to the LiveLog component. Used in the Diffusion Pipeline Integration tab.\n\n Args:\n prompt (str): The text prompt for image generation.\n **kwargs: Additional arguments including:\n - log_callback (Callable): Callback to send logs and progress to LiveLog.\n - progress_bar_handler: Handler for tqdm progress updates.\n - total_steps (int, optional): Number of diffusion steps, defaults to 10.\n - log_name (str, optional): Logger name, defaults to 'diffusion_app'.\n\n Returns:\n List: Generated images from the diffusion pipeline.\n\n Raises:\n Exception: If an error occurs during image generation, logged and re-raised.\n \"\"\"\n log_callback = kwargs.get('log_callback')\n progress_bar_handler = kwargs.get('progress_bar_handler')\n total_steps = kwargs.get('total_steps', 10)\n logger = logging.getLogger(kwargs.get('log_name', 'diffusion_app'))\n\n try:\n pipe = load_pipeline()\n pipe.set_progress_bar_config(file=progress_bar_handler, disable=False, ncols=100, dynamic_ncols=True, ascii=\" \u2588\")\n \n seed = random.randint(0, MAX_SEED)\n generator = torch.Generator(device=\"cuda\").manual_seed(seed)\n prompt_style = f\"hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic\"\n negative_prompt_style = \"cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly\"\n \n logger.info(f\"Using seed: {seed}\")\n log_callback(log_content=f\"Using seed: {seed}\")\n time.sleep(0.03)\n logger.info(\"Starting diffusion process...\")\n log_callback(log_content=\"Starting diffusion process...\")\n time.sleep(0.03)\n \n def progress_callback(pipe_instance, step, timestep, callback_kwargs):\n \"\"\"Callback for diffusion pipeline to log progress at each step.\"\"\"\n if log_callback:\n log_callback(advance=1, log_content=f\"Diffusion step {step + 1}/{total_steps}\")\n time.sleep(0.03)\n return callback_kwargs\n \n images = pipe(\n prompt=prompt_style,\n negative_prompt=negative_prompt_style,\n width=1024,\n height=1024,\n guidance_scale=3.0,\n num_inference_steps=total_steps,\n generator=generator,\n callback_on_step_end=progress_callback\n ).images\n \n logger.log(logging.INFO + 5, \"Image generated successfully!\")\n log_callback(status=\"success\", final_payload=images, log_content=\"Image generated successfully!\")\n time.sleep(0.03)\n return images\n except Exception as e:\n logger.error(f\"Error in diffusion logic: {e}, process aborted!\")\n log_callback(status=\"error\", log_content=f\"Error: {str(e)}\")\n time.sleep(0.03)\n raise e\n\n# --- 3. PIPELINE LOADING ---\ndiffusion_pipeline = None\npipeline_lock = threading.Lock()\n\ndef load_pipeline():\n \"\"\"\n Load and cache the Stable Diffusion XL pipeline for image generation, ensuring thread-safe initialization.\n\n Returns:\n StableDiffusionXLPipeline: The loaded pipeline, ready for image generation.\n \"\"\"\n global diffusion_pipeline\n with pipeline_lock:\n if diffusion_pipeline is None:\n print(\"Loading Stable Diffusion model for the first time...\")\n pipe = StableDiffusionXLPipeline.from_pretrained(\n MODEL_ID, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False, device_map=\"cuda\"\n )\n pipe.enable_vae_tiling()\n pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) \n diffusion_pipeline = pipe\n print(\"Model loaded successfully!\")\n return diffusion_pipeline\n\n# --- 4. GRADIO UI ---\nwith gr.Blocks(theme=gr.themes.Ocean()) as demo:\n gr.HTML(\"<h1><center>LiveLog Component Showcase</center></h1>\")\n\n with gr.Tabs():\n with gr.TabItem(\"LiveLog Feature Demo\"):\n \"\"\"Interactive tab to test LiveLog features with customizable properties and simulated processes.\"\"\"\n gr.Markdown(\"### Test all features of the LiveLog component interactively.\")\n with gr.Row():\n with gr.Column(scale=3):\n feature_logger = LiveLog(\n label=\"Process Output\",\n line_numbers=True,\n height=450,\n background_color=\"#000000\",\n display_mode=\"full\" \n )\n with gr.Column(scale=1):\n with gr.Group():\n gr.Markdown(\"### Component Properties\")\n display_mode_radio = gr.Radio([\"full\", \"log\", \"progress\"], label=\"Display Mode\", value=\"full\")\n rate_unit = gr.Radio([\"it/s\", \"s/it\"], label=\"Progress rate unit\", value=\"it/s\")\n bg_color_picker = gr.ColorPicker(label=\"Background Color\", value=\"#000000\")\n line_numbers_checkbox = gr.Checkbox(label=\"Show Line Numbers\", value=True)\n autoscroll_checkbox = gr.Checkbox(label=\"Autoscroll\", value=True)\n disable_console_checkbox = gr.Checkbox(label=\"Disable Python Console Output\", value=False)\n with gr.Group():\n gr.Markdown(\"### Simulation Controls\")\n start_btn = gr.Button(\"Run Success Case\", variant=\"primary\")\n error_btn = gr.Button(\"Run Error Case\")\n\n @livelog(\n log_names=[\"logging_app\"],\n outputs_for_yield=[feature_logger, start_btn, error_btn],\n log_output_index=0,\n interactive_outputs_indices=[1, 2],\n result_output_index=0,\n use_tracker=True,\n tracker_mode=\"manual\",\n tracker_total_arg_name=\"total_steps\",\n tracker_description=\"Simulating a process...\",\n tracker_rate_unit=\"it/s\",\n disable_console_logs=\"disable_console\",\n tracker_total_steps=100\n )\n def run_success_case(disable_console: bool, rate_unit: str, total_steps: int = 100, **kwargs):\n \"\"\"\n Run a simulated process that completes successfully, logging progress and status to feature_logger.\n\n Args:\n disable_console (bool): If True, suppress console logs.\n rate_unit (str): Unit for progress rate ('it/s' or 's/it').\n total_steps (int, optional): Total steps for the process. Defaults to 100.\n **kwargs: Additional arguments passed to _run_process_logic.\n \"\"\"\n kwargs[\"total_steps\"] = total_steps\n kwargs[\"rate_unit\"] = rate_unit\n kwargs[\"disable_console\"] = disable_console\n kwargs[\"log_name\"] = \"logging_app\"\n _run_process_logic(run_error_case=False, **kwargs)\n\n @livelog(\n log_names=[\"logging_app\"],\n outputs_for_yield=[feature_logger, start_btn, error_btn],\n log_output_index=0,\n interactive_outputs_indices=[1, 2],\n result_output_index=0,\n use_tracker=True,\n tracker_mode=\"manual\",\n tracker_total_arg_name=\"total_steps\",\n tracker_description=\"Simulating an error...\",\n tracker_rate_unit=\"it/s\",\n disable_console_logs=\"disable_console\",\n tracker_total_steps=100\n )\n def run_error_case(disable_console: bool, rate_unit: str, total_steps: int = 100, **kwargs):\n \"\"\"\n Run a simulated process that triggers an error, logging progress and error to feature_logger.\n\n Args:\n disable_console (bool): If True, suppress console logs.\n rate_unit (str): Unit for progress rate ('it/s' or 's/it').\n total_steps (int, optional): Total steps for the process. Defaults to 100.\n **kwargs: Additional arguments passed to _run_process_logic.\n \"\"\"\n kwargs[\"total_steps\"] = total_steps\n kwargs[\"rate_unit\"] = rate_unit\n kwargs[\"disable_console\"] = disable_console\n kwargs[\"log_name\"] = \"logging_app\"\n _run_process_logic(run_error_case=True, **kwargs)\n\n start_btn.click(\n fn=run_success_case,\n inputs=[disable_console_checkbox, rate_unit],\n outputs=[feature_logger, start_btn, error_btn]\n )\n error_btn.click(\n fn=run_error_case,\n inputs=[disable_console_checkbox, rate_unit],\n outputs=[feature_logger, start_btn, error_btn]\n )\n feature_logger.clear(fn=lambda: None, outputs=[feature_logger])\n \n controls = [display_mode_radio, bg_color_picker, line_numbers_checkbox, autoscroll_checkbox]\n def update_livelog_properties(mode, color, lines, scroll):\n \"\"\"Update LiveLog properties dynamically based on user input.\"\"\"\n return gr.update(display_mode=mode, background_color=color, line_numbers=lines, autoscroll=scroll)\n for control in controls:\n control.change(fn=update_livelog_properties, inputs=controls, outputs=feature_logger)\n \n with gr.TabItem(\"Diffusion Pipeline Integration\"):\n \"\"\"Tab to monitor a real image generation process using Stable Diffusion with LiveLog.\"\"\"\n gr.Markdown(\"### Use `LiveLog` to monitor a real image generation process.\")\n with gr.Row():\n with gr.Column(scale=3):\n with gr.Group():\n prompt = gr.Textbox(label=\"Enter your prompt\", show_label=False, placeholder=\"A cinematic photo of a robot in a floral garden...\", scale=8, container=False)\n run_button = gr.Button(\"Generate\", scale=1, variant=\"primary\")\n livelog_viewer = LiveLog(\n label=\"Process Monitor\",\n height=350,\n display_mode=\"full\",\n line_numbers=False \n )\n with gr.Column(scale=2):\n result_gallery = gr.Gallery(label=\"Result\", columns=1, show_label=False, height=500, min_width=768, preview=True)\n \n @spaces.GPU(duration=60)\n @livelog(\n log_names=[\"diffusion_app\"],\n outputs_for_yield=[result_gallery, livelog_viewer, run_button],\n log_output_index=1,\n interactive_outputs_indices=[2],\n result_output_index=0,\n use_tracker=True,\n tracker_mode=\"auto\",\n tracker_total_arg_name=\"total_steps\",\n tracker_description=\"Diffusion Steps\",\n tracker_rate_unit=\"it/s\",\n disable_console_logs=\"disable_console\",\n tracker_total_steps=10\n )\n def generate(prompt: str, total_steps: int = 10, disable_console: bool = False, rate_unit: str = 'it/s', **kwargs):\n \"\"\"\n Generate an image using Stable Diffusion, logging progress and status to livelog_viewer.\n\n Args:\n prompt (str): Text prompt for image generation.\n total_steps (int, optional): Number of diffusion steps. Defaults to 10.\n disable_console (bool): If True, suppress console logs.\n rate_unit (str): Unit for progress rate ('it/s' or 's/it').\n **kwargs: Additional arguments passed to _run_diffusion_logic.\n\n Returns:\n List: Generated images.\n \"\"\"\n kwargs[\"total_steps\"] = total_steps\n kwargs[\"rate_unit\"] = rate_unit\n kwargs[\"disable_console\"] = disable_console\n kwargs[\"log_name\"] = \"diffusion_app\"\n return _run_diffusion_logic(prompt, **kwargs)\n\n run_button.click(\n fn=generate,\n inputs=[prompt, gr.State(value=10), disable_console_checkbox, rate_unit],\n outputs=[result_gallery, livelog_viewer, run_button]\n )\n prompt.submit(\n fn=generate,\n inputs=[prompt, gr.State(value=10), disable_console_checkbox, rate_unit],\n outputs=[result_gallery, livelog_viewer, run_button]\n )\n livelog_viewer.clear(fn=lambda: None, outputs=[livelog_viewer])\n \nif __name__ == \"__main__\":\n configure_logging() \n demo.queue(max_size=50).launch(debug=True)\n```\n\n## `LiveLog`\n\n### Initialization\n\n<table>\n<thead>\n<tr>\n<th align=\"left\">name</th>\n<th align=\"left\" style=\"width: 25%;\">type</th>\n<th align=\"left\">default</th>\n<th align=\"left\">description</th>\n</tr>\n</thead>\n<tbody>\n<tr>\n<td align=\"left\"><code>value</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\ntyping.Union[\n typing.List[typing.Dict[str, typing.Any]],\n typing.Callable,\n NoneType,\n][\n typing.List[typing.Dict[str, typing.Any]][\n typing.Dict[str, typing.Any][str, Any]\n ],\n Callable,\n None,\n]\n```\n\n</td>\n<td align=\"left\"><code>None</code></td>\n<td align=\"left\">The initial value, a list of log/progress dictionaries. Can be a callable.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>label</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nstr | None\n```\n\n</td>\n<td align=\"left\"><code>None</code></td>\n<td align=\"left\">The component label.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>every</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nfloat | None\n```\n\n</td>\n<td align=\"left\"><code>None</code></td>\n<td align=\"left\">If `value` is a callable, run the function 'every' seconds.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>height</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nint | str\n```\n\n</td>\n<td align=\"left\"><code>400</code></td>\n<td align=\"left\">The height of the log panel in pixels or CSS units.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>autoscroll</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>True</code></td>\n<td align=\"left\">If True, the panel will automatically scroll to the bottom on new logs.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>line_numbers</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>False</code></td>\n<td align=\"left\">If True, shows line numbers for logs.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>background_color</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nstr\n```\n\n</td>\n<td align=\"left\"><code>\"#000000\"</code></td>\n<td align=\"left\">The background color of the log panel as a CSS-valid string.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>display_mode</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\n\"full\" | \"log\" | \"progress\"\n```\n\n</td>\n<td align=\"left\"><code>\"full\"</code></td>\n<td align=\"left\">\"full\" (logs and progress), \"log\" (only logs), or \"progress\" (only progress bar).</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>disable_console</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>True</code></td>\n<td align=\"left\">If True, logs will not be propagated to the standard Python console.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>show_download_button</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>True</code></td>\n<td align=\"left\">If True, shows the download button in the header.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>show_copy_button</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>True</code></td>\n<td align=\"left\">If True, shows the copy button in the header.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>show_clear_button</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>True</code></td>\n<td align=\"left\">If True, shows the clear button in the header.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>show_label</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>True</code></td>\n<td align=\"left\">If True, will display label.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>container</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>True</code></td>\n<td align=\"left\">If True, will place the component in a container.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>scale</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nint | None\n```\n\n</td>\n<td align=\"left\"><code>None</code></td>\n<td align=\"left\">Relative size compared to adjacent Components.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>min_width</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nint\n```\n\n</td>\n<td align=\"left\"><code>160</code></td>\n<td align=\"left\">Minimum pixel width, will wrap if not sufficient screen space.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>visible</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>True</code></td>\n<td align=\"left\">If False, the component will be hidden.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>elem_id</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nstr | None\n```\n\n</td>\n<td align=\"left\"><code>None</code></td>\n<td align=\"left\">An optional string that is assigned as the id of this component in the HTML DOM.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>elem_classes</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nlist[str] | str | None\n```\n\n</td>\n<td align=\"left\"><code>None</code></td>\n<td align=\"left\">An optional string or list of strings assigned as the class of this component.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>render</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nbool\n```\n\n</td>\n<td align=\"left\"><code>True</code></td>\n<td align=\"left\">If False, this component will not be rendered.</td>\n</tr>\n\n<tr>\n<td align=\"left\"><code>key</code></td>\n<td align=\"left\" style=\"width: 25%;\">\n\n```python\nint | str | tuple[int | str, Ellipsis] | None\n```\n\n</td>\n<td align=\"left\"><code>None</code></td>\n<td align=\"left\">A unique key for the component.</td>\n</tr>\n</tbody></table>\n\n\n### Events\n\n| name | description |\n|:-----|:------------|\n| `change` | Triggered when the value of the LiveLog changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input. |\n| `clear` | This listener is triggered when the user clears the LiveLog using the clear button for the component. |\n\n\n\n### User function\n\nThe impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).\n\n- When used as an Input, the component only impacts the input signature of the user function.\n- When used as an output, the component only impacts the return signature of the user function.\n\nThe code snippet below is accurate in cases where the component is used as both an input and an output.\n\n- **As output:** Is passed, the preprocessed input data sent to the user's function in the backend.\n- **As input:** Should return, the output data received by the component from the user's function in the backend.\n\n ```python\n def predict(\n value: typing.Optional[typing.List[typing.Dict[str, typing.Any]]][\n typing.List[typing.Dict[str, typing.Any]][\n typing.Dict[str, typing.Any][str, Any]\n ],\n None,\n]\n ) -> typing.Optional[typing.List[typing.Dict[str, typing.Any]]][\n typing.List[typing.Dict[str, typing.Any]][\n typing.Dict[str, typing.Any][str, Any]\n ],\n None,\n]:\n return value\n ```\n \n",
"bugtrack_url": null,
"license": null,
"summary": "A Live Log Component for Gradio Interface",
"version": "0.0.9",
"project_urls": null,
"split_keywords": [
"gradio-custom-component",
" gradio-template-code"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f90a6e28a5766896211bb171258bd97087c977139ddda6602f648345d673a715",
"md5": "740f3651e23aad1f436163f965455a36",
"sha256": "a808fb4121358305c9db2b4f5b5b82850864d54982795490c3abcd8d179b55fe"
},
"downloads": -1,
"filename": "gradio_livelog-0.0.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "740f3651e23aad1f436163f965455a36",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 109973,
"upload_time": "2025-10-14T21:33:27",
"upload_time_iso_8601": "2025-10-14T21:33:27.523047Z",
"url": "https://files.pythonhosted.org/packages/f9/0a/6e28a5766896211bb171258bd97087c977139ddda6602f648345d673a715/gradio_livelog-0.0.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d65297aa0932ec24ae9024db3d591425a9a6cd58cd58c7647beabb7b06fb630c",
"md5": "eed860814116a37377947bc5b9ab2213",
"sha256": "b69217d87d79542c337c2196937224a2d97c2dd3292945a2fa4ef6608ff7739f"
},
"downloads": -1,
"filename": "gradio_livelog-0.0.9.tar.gz",
"has_sig": false,
"md5_digest": "eed860814116a37377947bc5b9ab2213",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 196633,
"upload_time": "2025-10-14T21:33:28",
"upload_time_iso_8601": "2025-10-14T21:33:28.749882Z",
"url": "https://files.pythonhosted.org/packages/d6/52/97aa0932ec24ae9024db3d591425a9a6cd58cd58c7647beabb7b06fb630c/gradio_livelog-0.0.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-14 21:33:28",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "gradio-livelog"
}