graffitiai


Namegraffitiai JSON
Version 0.1.13 PyPI version JSON
download
home_pagehttps://github.com/RandyRDavila/GraffitiAI
SummaryA Python package for automated mathematical conjecturing.
upload_time2025-02-11 17:02:09
maintainerNone
docs_urlNone
authorRandy Davila
requires_python>=3.7
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GraffitiAI

GraffitiAI is a Python package for automated mathematical conjecturing, inspired by the legacy of GRAFFITI. It provides tools for exploring relationships between mathematical invariants and properties, with a focus on graph theory and polytopes. This package supports generating conjectures, applying heuristics, and visualizing results.

## Features
- Load and preprocess datasets with ease.
- Identify possible invariants and hypotheses for conjecturing.
- Generate upper and lower bounds for a target invariant.
- Apply customizable heuristics to refine conjectures.
- Export results to PDF for presentation and sharing.
- Includes a sample dataset of 3-regular polytopes for experimentation.

---

## Installation

To install GraffitiAI, use `pip`:

```bash
# Install GraffitiAI with pip
pip install graffitiai
```

---

## Quick Start

Here's a simple example to get you started:

```python
from graffitiai import TxGraffiti

# Initialize the Optimist instance
ai = TxGraffiti()

# Load a custom dataset
ai.read_csv("<path_to_your_data>.csv")

# Describe available invariants and hypotheses
ai.describe_invariants_and_hypotheses()

# Generate conjectures
ai.conjecture(
    target_invariants=[
        "zero_forcing_number",
        "total_domination_number",
    ],
    other_invariants=[
        "independence_number",
        "diameter",
        "radius",
        "domination_number"
    ],
    hypothesis=[
      "a_connected_cubic_and_diamond_free_graph",
      "a_connected_and_cubic_graph_which_is_not_k_4",
   ],
    complexity_range=(1, 3),
    lower_b_max=None,
    upper_b_max=2,
)

# Write the conjectures to the wall!
ai.write_on_the_wall()

# Save conjectures to a PDF
ai.save_conjectures_to_pdf("custom_conjectures.pdf")
```

---

## Contributing

Contributions are welcome! If you have suggestions, find bugs, or want to add features, feel free to create an issue or submit a pull request.

---

## License

This project is licensed under the MIT License. See the LICENSE file for details.

---

## Acknowledgments

GraffitiAI is inspired by the pioneering work of GRAFFITI and built using the ideas of *TxGraffiti* and the *Optimist*.

### Author

Randy R. Davila, PhD


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/RandyRDavila/GraffitiAI",
    "name": "graffitiai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "Randy Davila",
    "author_email": "randyrdavila@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ee/bb/9e9e0a1dda6cd6d0a01d5f49b36573899eb3c5c227ce158ccbf935c02e8e/graffitiai-0.1.13.tar.gz",
    "platform": null,
    "description": "# GraffitiAI\n\nGraffitiAI is a Python package for automated mathematical conjecturing, inspired by the legacy of GRAFFITI. It provides tools for exploring relationships between mathematical invariants and properties, with a focus on graph theory and polytopes. This package supports generating conjectures, applying heuristics, and visualizing results.\n\n## Features\n- Load and preprocess datasets with ease.\n- Identify possible invariants and hypotheses for conjecturing.\n- Generate upper and lower bounds for a target invariant.\n- Apply customizable heuristics to refine conjectures.\n- Export results to PDF for presentation and sharing.\n- Includes a sample dataset of 3-regular polytopes for experimentation.\n\n---\n\n## Installation\n\nTo install GraffitiAI, use `pip`:\n\n```bash\n# Install GraffitiAI with pip\npip install graffitiai\n```\n\n---\n\n## Quick Start\n\nHere's a simple example to get you started:\n\n```python\nfrom graffitiai import TxGraffiti\n\n# Initialize the Optimist instance\nai = TxGraffiti()\n\n# Load a custom dataset\nai.read_csv(\"<path_to_your_data>.csv\")\n\n# Describe available invariants and hypotheses\nai.describe_invariants_and_hypotheses()\n\n# Generate conjectures\nai.conjecture(\n    target_invariants=[\n        \"zero_forcing_number\",\n        \"total_domination_number\",\n    ],\n    other_invariants=[\n        \"independence_number\",\n        \"diameter\",\n        \"radius\",\n        \"domination_number\"\n    ],\n    hypothesis=[\n      \"a_connected_cubic_and_diamond_free_graph\",\n      \"a_connected_and_cubic_graph_which_is_not_k_4\",\n   ],\n    complexity_range=(1, 3),\n    lower_b_max=None,\n    upper_b_max=2,\n)\n\n# Write the conjectures to the wall!\nai.write_on_the_wall()\n\n# Save conjectures to a PDF\nai.save_conjectures_to_pdf(\"custom_conjectures.pdf\")\n```\n\n---\n\n## Contributing\n\nContributions are welcome! If you have suggestions, find bugs, or want to add features, feel free to create an issue or submit a pull request.\n\n---\n\n## License\n\nThis project is licensed under the MIT License. See the LICENSE file for details.\n\n---\n\n## Acknowledgments\n\nGraffitiAI is inspired by the pioneering work of GRAFFITI and built using the ideas of *TxGraffiti* and the *Optimist*.\n\n### Author\n\nRandy R. Davila, PhD\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package for automated mathematical conjecturing.",
    "version": "0.1.13",
    "project_urls": {
        "Homepage": "https://github.com/RandyRDavila/GraffitiAI"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d3fba3b9b3fbe5c512c7df30a1f54a2d3f5af359719df5cffac76055472d9e7a",
                "md5": "8ed59af2b80bb1cf646742b61c130a71",
                "sha256": "f9ee43e3d5cd13a46910a8f4e3e0578566d4c3af028254c05f69ae7bab155e54"
            },
            "downloads": -1,
            "filename": "graffitiai-0.1.13-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8ed59af2b80bb1cf646742b61c130a71",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 606961,
            "upload_time": "2025-02-11T17:02:07",
            "upload_time_iso_8601": "2025-02-11T17:02:07.050161Z",
            "url": "https://files.pythonhosted.org/packages/d3/fb/a3b9b3fbe5c512c7df30a1f54a2d3f5af359719df5cffac76055472d9e7a/graffitiai-0.1.13-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "eebb9e9e0a1dda6cd6d0a01d5f49b36573899eb3c5c227ce158ccbf935c02e8e",
                "md5": "9131beba417117daffb11794413b4f56",
                "sha256": "c222b4123ccd656a9315f54dae53d5fac9903f323531ef51f458bb37f04eb360"
            },
            "downloads": -1,
            "filename": "graffitiai-0.1.13.tar.gz",
            "has_sig": false,
            "md5_digest": "9131beba417117daffb11794413b4f56",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 548856,
            "upload_time": "2025-02-11T17:02:09",
            "upload_time_iso_8601": "2025-02-11T17:02:09.005000Z",
            "url": "https://files.pythonhosted.org/packages/ee/bb/9e9e0a1dda6cd6d0a01d5f49b36573899eb3c5c227ce158ccbf935c02e8e/graffitiai-0.1.13.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-11 17:02:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "RandyRDavila",
    "github_project": "GraffitiAI",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "graffitiai"
}
        
Elapsed time: 0.62678s