graph-generators


Namegraph-generators JSON
Version 0.1.5 PyPI version JSON
download
home_pagehttps://github.com/postvakje/graph-generators
SummaryPython functions to compute various classes of networkx graphs
upload_time2024-01-15 19:24:12
maintainer
docs_urlNone
authorChai Wah Wu
requires_python>= 3.5
licenseLICENSE
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # graph-generators
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

Python functions to compute various classes of `networkx` graphs

## Requirements
Requires `python >= 3.5` and `networkx`.

## Installation
`pip install graph-generators`

## Usage
After installation, run `from graph_generators import *`

For instance, `keller_graph(n)` returns an _n_-dimensional Keller graph.

## List of graphs

| Graph name     | Function name |
|---------|---------------|
| [Keller graph](https://mathworld.wolfram.com/KellerGraph.html) | `keller_graph` |
| [King graph](https://mathworld.wolfram.com/KingGraph.html) | `king_graph` |
| [Knight graph](https://mathworld.wolfram.com/KnightGraph.html) | `knight_graph` |
| [Antelope graph](https://mathworld.wolfram.com/AntelopeGraph.html) | `antelope_graph` |
| [Fiveleaper graph](https://mathworld.wolfram.com/FiveleaperGraph.html) | `fiveleaper_graph` |
| [Prism graph](https://mathworld.wolfram.com/PrismGraph.html) | `prism_graph` |
| [Moebius ladder graph](https://mathworld.wolfram.com/MoebiusLadder.html) | `mobius_ladder_graph` |
| [Book graph](https://mathworld.wolfram.com/BookGraph.html) | `book_graph` |
| [Stacked book graph](https://mathworld.wolfram.com/StackedBookGraph.html) | `stacked_book_graph` |
| [Odd graph](https://mathworld.wolfram.com/OddGraph.html) | `odd_graph` |
| [Fibonacci cube graph](https://mathworld.wolfram.com/FibonacciCubeGraph.html) | `fibonacci_cube_graph` |
| [Lucas cube graph](https://mathworld.wolfram.com/LucasCubeGraph.html) | `lucas_cube_graph` |
| [Halved cube graph](https://mathworld.wolfram.com/HalvedCubeGraph.html) | `halved_cube_graph` |
| [Folded cube graph](https://mathworld.wolfram.com/FoldedCubeGraph.html) | `folded_cube_graph` |

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/postvakje/graph-generators",
    "name": "graph-generators",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">= 3.5",
    "maintainer_email": "",
    "keywords": "",
    "author": "Chai Wah Wu",
    "author_email": "cwwuieee@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/af/6f/0fe87d983b66cb7d174ee579fb255627ac97b3e73a81acb7262a5c62f7de/graph-generators-0.1.5.tar.gz",
    "platform": null,
    "description": "# graph-generators\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\nPython functions to compute various classes of `networkx` graphs\n\n## Requirements\nRequires `python >= 3.5` and `networkx`.\n\n## Installation\n`pip install graph-generators`\n\n## Usage\nAfter installation, run `from graph_generators import *`\n\nFor instance, `keller_graph(n)` returns an _n_-dimensional Keller graph.\n\n## List of graphs\n\n| Graph name     | Function name |\n|---------|---------------|\n| [Keller graph](https://mathworld.wolfram.com/KellerGraph.html) | `keller_graph` |\n| [King graph](https://mathworld.wolfram.com/KingGraph.html) | `king_graph` |\n| [Knight graph](https://mathworld.wolfram.com/KnightGraph.html) | `knight_graph` |\n| [Antelope graph](https://mathworld.wolfram.com/AntelopeGraph.html) | `antelope_graph` |\n| [Fiveleaper graph](https://mathworld.wolfram.com/FiveleaperGraph.html) | `fiveleaper_graph` |\n| [Prism graph](https://mathworld.wolfram.com/PrismGraph.html) | `prism_graph` |\n| [Moebius ladder graph](https://mathworld.wolfram.com/MoebiusLadder.html) | `mobius_ladder_graph` |\n| [Book graph](https://mathworld.wolfram.com/BookGraph.html) | `book_graph` |\n| [Stacked book graph](https://mathworld.wolfram.com/StackedBookGraph.html) | `stacked_book_graph` |\n| [Odd graph](https://mathworld.wolfram.com/OddGraph.html) | `odd_graph` |\n| [Fibonacci cube graph](https://mathworld.wolfram.com/FibonacciCubeGraph.html) | `fibonacci_cube_graph` |\n| [Lucas cube graph](https://mathworld.wolfram.com/LucasCubeGraph.html) | `lucas_cube_graph` |\n| [Halved cube graph](https://mathworld.wolfram.com/HalvedCubeGraph.html) | `halved_cube_graph` |\n| [Folded cube graph](https://mathworld.wolfram.com/FoldedCubeGraph.html) | `folded_cube_graph` |\n",
    "bugtrack_url": null,
    "license": "LICENSE",
    "summary": "Python functions to compute various classes of networkx graphs",
    "version": "0.1.5",
    "project_urls": {
        "Homepage": "https://github.com/postvakje/graph-generators"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "82ad59b5cc1df3079957acc8c179a5ce48771307573d91a7c4c9be33e35679fa",
                "md5": "062d799b79dd398639561065ca3d7cf2",
                "sha256": "e1f4d3071c785698ac1f47521e165e02e5d6f87fe0ad6d8822fbd5bd9ac777cd"
            },
            "downloads": -1,
            "filename": "graph_generators-0.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "062d799b79dd398639561065ca3d7cf2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">= 3.5",
            "size": 7969,
            "upload_time": "2024-01-15T19:24:11",
            "upload_time_iso_8601": "2024-01-15T19:24:11.287654Z",
            "url": "https://files.pythonhosted.org/packages/82/ad/59b5cc1df3079957acc8c179a5ce48771307573d91a7c4c9be33e35679fa/graph_generators-0.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "af6f0fe87d983b66cb7d174ee579fb255627ac97b3e73a81acb7262a5c62f7de",
                "md5": "e3371db994e3f9c7d8ed54cd5a165a62",
                "sha256": "1398609a92a06d96f0933d37f849e6ac42bc92ef5cf8814b74addf558b296e84"
            },
            "downloads": -1,
            "filename": "graph-generators-0.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "e3371db994e3f9c7d8ed54cd5a165a62",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">= 3.5",
            "size": 7527,
            "upload_time": "2024-01-15T19:24:12",
            "upload_time_iso_8601": "2024-01-15T19:24:12.696437Z",
            "url": "https://files.pythonhosted.org/packages/af/6f/0fe87d983b66cb7d174ee579fb255627ac97b3e73a81acb7262a5c62f7de/graph-generators-0.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-15 19:24:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "postvakje",
    "github_project": "graph-generators",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "graph-generators"
}
        
Elapsed time: 0.16278s